Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone

Abstract

Thyroxine (T4) is the predominant form of thyroid hormone (TH). Hyperthyroidism, a condition associated with excess TH, is characterized by increases in metabolic rate, core body temperature and cardiac performance. In target tissues, T4 is enzymatically deiodinated to 3,5,3′-triiodothyronine (T3), a high-affinity ligand for the nuclear TH receptors TRα and TRβ, whose activation controls normal vertebrate development and physiology1. T3-modulated transcription of target genes via activation of TRα and TRβ is a slow process, the effects of which manifest over hours and days. Although rapidly occurring effects of TH have been documented, the molecules that mediate these non-genomic effects remain obscure2,3. Here we report the discovery of 3-iodothyronamine (T1AM), a naturally occurring derivative of TH that in vitro is a potent agonist of the G protein–coupled trace amine receptor TAR1. Administering T1AM in vivo induces profound hypothermia and bradycardia within minutes. T1AM treatment also rapidly reduces cardiac output in an ex vivo working heart preparation. These results suggest the existence of a new signaling pathway, stimulation of which leads to rapid physiological and behavioral consequences that are opposite those associated with excess TH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TAR1 activation and tissue identification of 3-iodothyronamine.
Figure 2: Effect of thyronamines on rectal temperature of mice.
Figure 3: Cardiac effects of thyronamines.

Similar content being viewed by others

References

  1. Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001).

    Article  CAS  Google Scholar 

  2. Davis, P.J. & Davis, F.B. Nongenomic actions of thyroid hormone. Thyroid 6, 497–504 (1996).

    Article  CAS  Google Scholar 

  3. Falkenstein, E., Tillmann, H.-C., Christ, M., Feuring, M. & Wehling, M. Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacol. Rev. 52, 513–555 (2000).

    CAS  PubMed  Google Scholar 

  4. Zhu, M.-Y. & Juorio, A.V. Aromatic L-amino acid decarboxylase: biological characterization and functional role. Gen. Pharmacol. 26, 681–696 (1995).

    Article  CAS  Google Scholar 

  5. Borowsky, B. et al. Trace amines: identification of a family of mammalian G protein–coupled receptors. Proc. Natl. Acad. Sci. USA 98, 8966–8971 (2001).

    Article  CAS  Google Scholar 

  6. Branchek, T.A. & Blackburn, T.P. Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr. Opin. Pharmacol. 3, 90–97 (2003).

    Article  CAS  Google Scholar 

  7. Bunzow, J.R. et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181–1188 (2001).

    Article  CAS  Google Scholar 

  8. Stohr, R. Synthese des thyronamins. Hoppe-Seyler Z. Physiol. Chem. 201, 142–148 (1931).

    Article  CAS  Google Scholar 

  9. Tomita, K. & Lardy, H.A. Synthesis and biological activity of some triiodinated analogues of thyroxine. J. Biol. Chem. 219, 595–604 (1956).

    CAS  PubMed  Google Scholar 

  10. Albert, P.R., Neve, K.A., Bunzow, J.R. & Civelli, O. Coupling of a cloned rat dopamine-D2 receptor to inhibition of adenylyl cyclase and prolactin secretion. J. Biol. Chem. 265, 2098–2104 (1990).

    CAS  PubMed  Google Scholar 

  11. Grandy, D.K. et al. Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Proc. Natl. Acad. Sci. USA 88, 9175–9179 (1991).

    Article  CAS  Google Scholar 

  12. Sunahara, R.K. et al. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347, 80–83 (1990).

    Article  CAS  Google Scholar 

  13. Tiberi, M. & Caron, M.G. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J. Biol. Chem. 269, 27925–27931 (1994).

    CAS  PubMed  Google Scholar 

  14. Zhou, Q.-Y. et al. Cloning and expression of human and rat D1 dopamine receptors. Nature 347, 76–80 (1990).

    Article  CAS  Google Scholar 

  15. Chiellini, G. et al. A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem. Biol. 5, 299–306 (1998).

    Article  CAS  Google Scholar 

  16. Pinna, G. et al. Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 143, 1789–1800 (2002).

    Article  CAS  Google Scholar 

  17. Clark, W.G. & Clark, Y.L. Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants. Neurosci. Biobehav. Rev. 4, 281–375 (1980).

    Article  CAS  Google Scholar 

  18. Clark, W.G. & Clark, Y.L. Changes in body temperature after administration of acetylcholine, histamine, morphine, prostaglandins and related agents. Neurosci. Biobehav. Rev. 4, 175–240 (1980).

    Article  CAS  Google Scholar 

  19. Clark, W.G. & Lipton, J.M. Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents. II. Neurosci. Biobehav. Rev. 9, 299–371 (1985).

    Article  CAS  Google Scholar 

  20. Neely, J.R., Liebermeister, H., Battersby, E.J. & Morgan, H.E. Effect of pressure development on oxygen consumption by isolated rat heart. Am. J. Physiol. 212, 804–814 (1967).

    Article  CAS  Google Scholar 

  21. Zucchi, R. et al. Effect of ischemia and reperfusion on cardiac ryanodine receptors–sarcoplasmic reticulum Ca2+ channels. Circ. Res. 74, 271–280 (1994).

    Article  CAS  Google Scholar 

  22. Dratman, M.B. On the mechanism of action of thyroxin, an amino acid analog of tyrosine. J. Theor. Biol. 46, 255–270 (1974).

    Article  CAS  Google Scholar 

  23. Butz, G.M. & Davisson, R.L. Long-term telemetric measurement of cardiovascular parameters in awake mice: a physiological genomics tool. Physiol. Genomics 5, 89–97 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Arttamangkul, A. Carlsson, L. Davis, D. Dawson, K. Garlid, G. Giraud, B. Habecker, S. Hillman, R. Hohimer, M.J. Kelly, L. Lester, G. Murdoch, P. Paucek, J.B. Roulet, L. Simon, M. Sonders, K. Thornburg and W. Woodward for discussions, encouragement and insight; A. Younkin, S. Forrester, L. Jurvic, Z. Rahman, Q. Yue and H. Xue for technical assistance; and M. von Zastrow for the hβ2AR HEK-293 cell line. This work was supported by the Oregon Health and Sciences University (OHSU) Heart Research Center, and by grants from the National Institute on Alchohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA) (DA07262 to P.J.K.), the NIDA (DA107803 to D.K.G.), the Ministero dell'Istruzione dell'Università e della Ricerca (MIUR) (to R.Z.), the NIH (DK-52798 to T.S.S.) and the Sandler Family Supporting Foundation (to T.S.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas S Scanlan or David K Grandy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scanlan, T., Suchland, K., Hart, M. et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10, 638–642 (2004). https://doi.org/10.1038/nm1051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing