Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions

Antiepileptic drugs (AEDs) are commonly prescribed for nonepileptic conditions, including migraine headache, chronic neuropathic pain, mood disorders, schizophrenia and various neuromuscular syndromes. In many of these conditions, as in epilepsy, the drugs act by modifying the excitability of nerve (or muscle) through effects on voltage-gated sodium and calcium channels or by promoting inhibition mediated by γ-aminobutyric acid (GABA) A receptors. In neuropathic pain, chronic nerve injury is associated with the redistribution and altered subunit compositions of sodium and calcium channels that predispose neurons in sensory pathways to fire spontaneously or at inappropriately high frequencies, often from ectopic sites. AEDs may counteract this abnormal activity by selectively affecting pain-specific firing; for example, many AEDs suppress high-frequency action potentials by blocking voltage-activated sodium channels in a use-dependent fashion. Alternatively, AEDs may specifically target pathological channels; for example, gabapentin is a ligand of α2δ voltage-activated calcium channel subunits that are overexpressed in sensory neurons after nerve injury. Emerging evidence suggests that effects on signaling pathways that regulate neuronal plasticity and survival may be a factor in the delayed clinical efficacy of AEDs in some neuropsychiatric conditions, including bipolar affective disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gabapentin and Ca2+ channel subunit plasticity in chronic pain models.
Figure 2: The peripheral and spinal cord afferent pain pathway, showing alterations in voltage-dependent Na+ and Ca2+ channel subunits after chronic nerve injury associated with neuropathic pain.
Figure 3: Common effects of AEDs and lithium on cell signaling thought to contribute to long-term effects in mood disorders.

References

  1. Löscher, W. & Schmidt, D. New horizons in the development of antiepileptic drugs. Epilepsy Res. 50, 3–16 (2002).

    Article  PubMed  Google Scholar 

  2. Fromm, G.H. Antiepileptic actions of carbamazepine. in Drugs for Control of Epilepsy: Actions on Neuronal Networks Involved in Seizure Disorders (eds. Faingold, C.L. & Fromm, G.H.) 425–436 (CRC Press, Boca Raton, Florida, USA, 1992).

    Google Scholar 

  3. Silberstein, S.D. Shared mechanisms and comorbidities in neurologic and psychiatric disorders. Headache 41 (suppl. 1), S11–S17 (2001).

    Article  PubMed  Google Scholar 

  4. Ottman, R. & Lipton, R.B. Comorbidity of migraine and epilepsy. Neurology 44, 2105–2110 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. Rogawski, M.A. & Löscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553–564 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Rudolph, U. & Möhler, H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu. Rev. Pharmacol. Toxicol. 44, 475–498 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. ffrench-Mullen, J.M.H., Barker, J.L. & Rogawski, M,A. Calcium current block by (−)-pentobarbital, phenobarbital and CHEB but not (+)-pentobarbital in acutely isolated CA1 neurons: comparison with effects on GABA-activated Cl− current, J. Neurosci. 13, 3211–3221 (1993).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Pollack, M.H., Matthews, J. & Scott, E.L. Gabapentin as a potential treatment for anxiety disorders. Am. J. Psychiatry 155, 992–993 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. Pande, A.C. et al. Treatment of social phobia with gabapentin: a placebo-controlled study. J. Clin. Psychopharmacol. 19, 341–348 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. de-Paris, F. et al. Effects of gabapentin on anxiety induced by simulated public speaking. J. Psychopharmacol. 17, 184–188 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Ross EL. The evolving role of antiepileptic drugs in treating neuropathic pain. Neurology 55 (suppl. 1), S41–S46 (2000).

    PubMed  CAS  Google Scholar 

  12. Eisenberg, E., Alon, N., Ishay, A., Daoud, D. & Yarnitsky, D. Lamotrigine in the treatment of painful diabetic neuropathy. Eur. J. Neurol. 5, 167–173 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. Nicholson, B. Gabapentin use in neuropathic pain syndromes. Acta Neurol. Scand. 101, 359–371 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. Pappagallo, M. Newer antiepileptic drugs: possible uses in the treatment of neuropathic pain and migraine. Clin. Ther. 25, 2506–2538 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Rozen, T.D. Antiepileptic drugs in the management of cluster headache and trigeminal neuralgia. Headache 41 (suppl. 1), S25–S32 (2001).

    Article  PubMed  Google Scholar 

  16. Beydoun, A. & Backonja, M.M. Mechanistic stratification of antineuralgic agents. J. Pain Symptom. Manage. 25, S18–S30 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Dib-Hajj, S.D. et al. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 83, 591–600 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. Kim, C.H., Oh, Y., Chung, J.M. & Chung, K. The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Brain Res. Mol. Brain Res. 95, 153–161 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. Craner, M.J., Klein, J.P., Renganathan, M., Black, J.A. & Waxman, S.G. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann. Neurol. 52, 786–792 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. Abe, M., Kurihara, T., Han, W., Shinomiya, K. & Tanabe, T. Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain. Spine 27, 1517–1524 (2002).

    Article  PubMed  Google Scholar 

  21. Gold, M.S. et al. Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158–166 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Hains, B.C. et al. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci. 23, 8881–8892 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Cummins, T.R. et al. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952–5961 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Novakovic, S.D. et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 18, 2174–2187 (1998).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Roza, C., Laird, J.M., Souslova, V., Wood, J.N. & Cervero, F. The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J. Physiol. (Lond). 550, 921–926 (2003).

    Article  CAS  Google Scholar 

  26. Shah, B.S. et al. β3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur. J. Neurosci. 12, 3985–3990 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Shah, B.S. et al. β3, a novel auxiliary subunit for the voltage gated sodium channel is upregulated in sensory neurones following streptozocin induced diabetic neuropathy in rat. Neurosci. Lett. 309, 1–4 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. Bartolomei, F. et al. Changes in the mRNAs encoding subtypes I, II and III sodium channel α subunits following kainate-induced seizures in rat brain. J. Neurocytol. 26, 667–678 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Aronica, E. et al. Induction of neonatal sodium channel II and III α-isoform mRNAs in neurons and microglia after status epilepticus in the rat hippocampus. Eur. J. Neurosci. 13, 1261–1266 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Ellerkmann, R.K. et al. Molecular and functional changes in voltage-dependent Na+ channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience 119, 323–333 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. Whitaker, W.R. et al. Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus. Neuroscience 106, 275–285 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Todorovic, S.M., Rastogi, A.J. & Jevtovic-Todorovic, V. Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats. Brit. J. Pharmacol. 140, 255–260 (2003).

    Article  CAS  Google Scholar 

  33. Rizzo, M.A. Successful treatment of painful traumatic mononeuropathy with carbamazepine: insights into a possible molecular pain mechanism. J. Neurol. Sci. 152, 103–106 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. Burchiel, K.J. Carbamazepine inhibits spontaneous activity in experimental neuromas. Exp. Neurol. 102, 249–253 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. Herrero, J.F., Laird, J.M. & Lopez-Garcia, J.A. Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog. Neurobiol. 61, 169–203 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. Chapman, V., Wildman, M.A. & Dickenson, A.H. Distinct electrophysiological effects of two spinally administered membrane stabilising drugs, bupivacaine and lamotrigine. Pain 71, 285–295 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Murakami, M. et al. Pain perception in mice lacking the β3 subunit of voltage-activated calcium channels. J. Biol. Chem. 277, 40342–40351 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. Cizkova, D. et al. Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury. Exp. Brain Res. 147, 456–463 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Newton, R.A., Bingham, S., Case, P.C., Sanger, G.J. & Lawson, S.N. Dorsal root ganglion neurons show increased expression of the calcium channel α2δ-1 subunit following partial sciatic nerve injury. Brain Res. Mol. Brain Res. 95, 1–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Luo, Z.D. et al. Upregulation of dorsal root ganglion α2δ calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J. Neurosci. 21, 1868–1875 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Pan, H.-L., Eisenach, J.C. & Chen, S.-R. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J. Pharmacol. Exp. Ther. 288, 1026–1030 (1999).

    PubMed  CAS  Google Scholar 

  42. Stanfa, L.C., Singh, L., Williams, R.G. & Dickenson, A.H. Gabapentin, ineffective in normal rats, markedly reduces C-fibre evoked responses after inflammation. NeuroReport 8, 587–590 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. Patel, M.K., Gonzalez, M.I., Bramwell, S., Pinnock, R.D. & Lee, K. Gabapentin inhibits excitatory synaptic transmission in the hyperalgesic spinal cord. Br. J. Pharmacol. 130, 1731–1734 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Luo, Z.D. et al. Injury type-specific calcium channel α2δ-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J. Pharmacol. Exp. Ther. 303, 1199–1205 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Shimoyama, M., Shimoyama, N. & Hori, Y. Gabapentin affects glutamatergic excitatory neurotransmission in the rat dorsal horn. Pain 85, 405–414 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. Field, M.J., Hughes, J. & Singh, L. (2000) Further evidence for the role of the α2δ subunit of voltage dependent calcium channels in models of neuropathic pain. Brit. J. Pharmacol. 131, 282–286 (2000).

    Article  CAS  Google Scholar 

  47. Todorovic, S.M. et al. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31, 75–85 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. Dogrul, A. et al. Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 105, 159–168 (2003).

    Article  PubMed  CAS  Google Scholar 

  49. Matthews, E.A. & Dickenson, A.H. Effects of ethosuximide, a T-type Ca2+ channel blocker, on dorsal horn neuronal responses in rats. Eur. J. Pharmacol. 415, 141–149 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. Hord, A.H., Denson, D.D., Chalfoun, A.G. & Azevedo, M.I. The effect of systemic zonisamide (Zonegran) on thermal hyperalgesia and mechanical allodynia in rats with an experimental mononeuropathy. Anesth. Analg. 96, 1700–1706 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. Kim, D. et al. Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302, 117–119 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Todorovic, S.M., Meyenburg, A. & Jevtovic-Todorovic, V. Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res. 951, 336–340 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. Pietrobon, D. & Striessnig, J. Neurobiology of migraine. Nat. Rev. Neurosci. 4, 386–398 (2003).

    Article  PubMed  CAS  Google Scholar 

  54. Randall, A. & Benham, C.D. Recent advances in the molecular understanding of voltage-gated Ca2+ channels. Mol. Cell. Neurosci. 14, 255–272 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. Mathew, N.T. Antiepileptic drugs in migraine prevention. Headache 41 (suppl. 1), S18–S24 (2001).

    Article  PubMed  Google Scholar 

  56. Brandes, J.L. et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA 291, 965–973 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. Chudnow, R.S., Mimbela, R.A., Owen, D.B. & Roach, E.S. Gabapentin for familial paroxysmal dystonic choreoathetosis. Neurology 49, 1441–1442 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. Richter, A. & Löscher, W. Gabapentin decreases the severity of dystonia at low doses in a genetic animal model of paroxysmal dystonic choreoathetosis. Eur. J. Pharmacol. 369, 335–338.

  59. Fukuda, M., Hashimoto, O., Nagakubo, S. & Hata, A. A family with an atonic variant of paroxysmal kinesigenic choreoathetosis and hypercalcitoninemia. Mov. Disord. 14, 342–344 (1999).

    Article  PubMed  CAS  Google Scholar 

  60. Lotze, T. & Jankovic, J. Paroxysmal kinesigenic dyskinesias. Semin. Pediatr. Neurol. 2003 10, 68–79 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Beech, J., Fletcher, J.E., Tripolitis, L. & Lindborgh, S. Effects of phenytoin in two myotonic horses with hyperkalemic periodic paralysis. Muscle Nerve 15, 932–936 (1992).

    Article  PubMed  CAS  Google Scholar 

  62. Cannon, S.C. From mutation to myotonia in sodium channel disorders. Neuromuscul. Disord. 7, 241–249 (1997).

    Article  PubMed  CAS  Google Scholar 

  63. Caress, J.B. & Walker, F.O. The spectrum of ectopic motor nerve behavior: from fasciculations to neuromyotonia. Neurologist 8, 41–46 (2002).

    Article  PubMed  Google Scholar 

  64. Oh, S.J., Alapati, A., Claussen, G.C. & Vernino, S. Myokymia, neuromyotonia, dermatomyositis, and voltage-gated K+ channel antibodies. Muscle Nerve 27, 757–760 (2003).

    Article  PubMed  Google Scholar 

  65. McGuire, S.A., Tomasovic, J.J. & Ackerman, N. Jr. Hereditary continuous muscle fiber activity. Arch. Neurol. 41, 395–396 (1984).

    Article  PubMed  CAS  Google Scholar 

  66. Lubbers, W.J. et al. Hereditary myokymia and paroxysmal ataxia linked to chromosome 12 is responsive to acetazolamide. J. Neurol. Neurosurg. Psychiatry 59, 400–405 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kullmann, D.M. The neuronal channelopathies. Brain 125, 1177–1195 (2002).

    Article  PubMed  Google Scholar 

  68. Pahwa, R. & Lyons, K.E. Essential tremor: differential diagnosis and current therapy. Am. J. Med. 115, 134–142 (2003).

    Article  PubMed  Google Scholar 

  69. Connor, G.S. A double-blind placebo-controlled trial of topiramate treatment for essential tremor. Neurology 59, 132–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. Praveen, V., Patole, S.K. & Whitehall, J.S. Hyperekplexia in neonates. Postgrad. Med. J. 77, 570–572 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhou, L., Chillag, K.L. & Nigro, M.A. Hyperekplexia: a treatable neurogenetic disease. Brain Dev. 24, 669–674 (2002).

    Article  PubMed  Google Scholar 

  72. Muzina, D.J., El-Sayegh, S. & Calabrese, J.R. Antiepileptic drugs in psychiatry—focus on randomized controlled trial. Epilepsy Res. 50, 195–202 (2002).

    Article  PubMed  CAS  Google Scholar 

  73. Harwood, A.J. & Agam, G. Search for a common mechanism of mood stabilizers. Biochem. Pharmacol. 66, 179–189 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. Manji, H.K. & Duman, R.S. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol. Bull. 35, 5–49 (2001).

    PubMed  CAS  Google Scholar 

  75. Coyle, J.T. & Duman, RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. Löscher, W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and models with spontaneous recurrent seizures. Epilepsy Res. 50, 105–123 (2002).

    Article  PubMed  Google Scholar 

  77. Löscher, W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16, 669–694 (2002).

    Article  PubMed  Google Scholar 

  78. Pitkänen, A. Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models. Epilepsy Res. 50, 141–160 (2002).

    Article  PubMed  Google Scholar 

  79. Williams, R.S., Cheng, L., Mudge, A.W. & Harwood, A.J. A common mechanism of action for three mood-stabilizing drugs. Nature 417, 292–295 (2002).

    Article  PubMed  CAS  Google Scholar 

  80. Berridge, M.J., Downes, C.P. & Hanley, M.R. Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419 (1989).

    Article  PubMed  CAS  Google Scholar 

  81. Lubrich, B. & van Calker, D. Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs? Neuropsychopharmacology 21, 519–529 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. O'Donnell, T. et al. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res. 880, 84–91 (2000).

    Article  PubMed  CAS  Google Scholar 

  83. Vaden, D.L., Ding, D., Peterson, B. & Greenberg, M.L. Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J. Biol. Chem. 276, 15466–15471 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. Lenox, R.H. & Wang, L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol. Psychiatry 8, 135–144 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. Li, X., Bijur, G.N. & Jope, R.S. Glycogen synthase kinase-3β, mood stabilizers, and neuroprotection. Bipolar Disord. 4, 137–144 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chen, G., Huang, L.D., Jiang, Y.M. & Manji, H.K. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327–1330 (1999).

    Article  PubMed  CAS  Google Scholar 

  87. Mai, L., Jope, R.S. & Li, X. BDNF-mediated signal transduction is modulated by GSK3β and mood stabilizing agents. J. Neurochem. 82, 75–83 (2002).

    Article  PubMed  CAS  Google Scholar 

  88. Yuan, P.X. et al. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem. 276, 31674–31683 (2001).

    Article  PubMed  CAS  Google Scholar 

  89. Einat, H. et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J. Neurosci. 23, 7311–7316 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Manji, H.K., Drevets, W.C. & Charney, D.S. The cellular neurobiology of depression. Nat. Med. 7, 541–547 (2001).

    Article  PubMed  CAS  Google Scholar 

  91. Winterer, G. & Hermann, W.M. Valproate and the symptomatic treatment of schizophrenia spectrum patients. Pharmacopsychiatry 33, 182–188 (2000).

    Article  PubMed  CAS  Google Scholar 

  92. Hosak, L. & Libiger, J. Antiepileptic drugs in schizophrenia: a review. Eur. Psychiatry 17, 371–378 (2002).

    Article  PubMed  CAS  Google Scholar 

  93. Göttlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Phiel, C.J. et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734–36741 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Guidotti, A., Pesold, C. & Costa, E. (2000) New neurochemical markers for psychosis: a working hypothesis of their operation. Neurochem. Res. 25, 1207–1218 (2000).

    Article  PubMed  CAS  Google Scholar 

  96. Tremolizzo, L. et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA 99, 17095–17100 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Akbarian, S. et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry 52, 258–266 (1995).

    Article  PubMed  CAS  Google Scholar 

  98. Volk, D.W., Austin, M.C., Pierri, J.N., Sampson, A.R. & Lewis, D.A. Decreased GAD67 mRNA expression in a subset of prefrontal cortical GABA neurons in subjects with schizophrenia. Arch. Gen. Psychiatry 57, 237–245 (2000).

    Article  PubMed  CAS  Google Scholar 

  99. Blum, B.P. & Mann, J.J. The GABAergic system in schizophrenia. Int. J. Neuropsychopharmacol. 5, 159–179 (2002).

    Article  PubMed  CAS  Google Scholar 

  100. Costa, E., Davis, J., Pesold, C., Tueting, P. & Guidotti, A. The heterozygote reeler mouse as a model for the development of a new generation of antipsychotics. Curr. Opin. Pharmacol. 2, 56–62 (2002).

    Article  PubMed  CAS  Google Scholar 

  101. Drake, M.E. et al. Levetiracetam for preventive treatment of migraine. Cephalalgia 21, 373 (2001).

    Google Scholar 

  102. Freitag, F.G., Diamond, S. & Solomon, G.D. The prophylaxis of migraine with the GABA-agonist tiagabine: a clinical report. Headache 19, 354 (1999).

    Google Scholar 

  103. Gironell, A. et al. A randomized placebo-controlled comparative trial of gabapentin and propranolol in essential tremor. Arch. Neurol. 56, 474–480 (1999).

    Article  Google Scholar 

  104. Sial, K.A., Malik, A. & Bajwa, Z. Small case series of gabitril (tiagabine) for prophylaxis of chronic daily headache with migrainous features. Arch. Phys. Med. Rehabil. 84, E23 (2003).

    Article  Google Scholar 

  105. Krusz, J.C. Levetiracetam as prophylaxis for resistant headaches. Cephalalgia 21, 373 (2001).

    Google Scholar 

  106. Pande, A.C. et al. Treatment of social phobia with gabapentin: a placebo-controlled study. J. Clin. Psychopharmacol. 19, 341–348 (1999).

    Article  PubMed  CAS  Google Scholar 

  107. Young, L.T. et al. Gabapentin as an adjunctive treatment in bipolar disorder. J. Affect. Disord. 55, 73–77 (1999).

    Article  PubMed  CAS  Google Scholar 

  108. Happe, S., Sauter, C., Klosch, G., Saletu, B. & Zeitlhofer, J. Gabapentin versus ropinirole in the treatment of idiopathic restless legs syndrome. Neuropsychobiology 48, 82–86 (2003).

    Article  PubMed  CAS  Google Scholar 

  109. Anonymous. Gabapentin (Neurontin) for chronic pain. Med. Lett. Drugs Ther. 46, 29–31 (2004).

  110. Johnson, B.A. et al. Oral topiramate for treatment of alcohol dependence: a randomised controlled trial. Lancet 361, 1677–1685 (2003).

    Article  PubMed  CAS  Google Scholar 

  111. Myrick, H., Malcolm, R. & Anton, R. The use of antiepileptics in the treatment of addictive disorders. Primary Psychiatry 10, 59–63 (2003).

    Google Scholar 

  112. Hoopes, S.P. et al. Treatment of bulimia nervosa with topiramate in a randomized, double-blind, placebo-controlled trial, part 1: improvement in binge and purge measures. J. Clin. Psych. 64, 1335–1341 (2003).

    Article  CAS  Google Scholar 

  113. McElroy, S.L. et al. Topiramate in the treatment of binge eating disorder associated with obesity: a randomized, placebo-controlled trial. Am. J. Psychiatry 160, 255–261 (2003).

    Article  PubMed  Google Scholar 

  114. Sarantopoulos, C., McCallum, B., Kwok, W.M. & Hogan, Q. Gabapentin decreases membrane calcium currents in injured as well as in control mammalian primary afferent neurons. Reg. Anesth. Pain Med. 27, 47–57 (2002).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A Rogawski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogawski, M., Löscher, W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10, 685–692 (2004). https://doi.org/10.1038/nm1074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing