Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantitative angiogenesis assays: Progress and problems

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Folkman, J. Tumor angiogenesis. in The Molecular Basis of Cancer (eds. Mendelsohn, J., Howley, P. M., Israel, M. A. & Liotta, L. A.) 206–232 (W. B. Saunders, Philadelphia, 1995).

    Google Scholar 

  2. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D. Signaling vascular morphogenesis and maintenance. Science 277, 48–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Höckel, M.K., Doctrow, S., Kissel, T. & Vaupel, P. Therapeutic angiogenesis. Arch. Surg. 128, 423–429 (1993).

    Article  PubMed  Google Scholar 

  6. Ware, J.A. & Simons, M. Angiogenesis in ischemic heart disease. Nature Med. 3, 158–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Auerbach, R.W. & Polakowski, I. Assays for angiogenesis: A review. Pharmacol. Ther. 51, 1–11 (1991).

    Article  PubMed  Google Scholar 

  8. Fan, T.-P.D. & Polverini, P.J. In vivo models of Angiogenesis. in Tumor angiogenesis (eds. Bicknell, R., Lewis, C. E. & Ferrara, N.) 5–18 (Oxford University Press, Oxford, 1997).

    Google Scholar 

  9. Patan, S., Munn L.L. & Jain R.K. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Ausprunk, D.H. & Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Sholley, M.M., Ferguson, G.P., Seibel, H.R., Montour, J.L. & Wilson, J.D. Mechanisms of neovascularization: Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51, 624–634 (1984).

    CAS  PubMed  Google Scholar 

  12. Jain, R.K. 1996 Landis Award Lecture: Delivery of molecular and cellular medicine to solid tumors. Mkrocirculation 4, 1–23 (1997).

    Article  CAS  Google Scholar 

  13. Sandison, J.C. A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear. Anat. Rec. 28, 281–287 (1924).

    Article  Google Scholar 

  14. Ide, A.G.N.H. & Warren, S.L. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  15. Zawicki, D.F., Jain, R.K., Schmid-Schoenbein, G.W. & Chien, S. Dynamics of neovascularization in normal tissue. Microvasc. Res. 21, 27–47 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Dudar, T.E. & Jain, R.K. Microcirculatory flow changes during tissue growth. Microvasc. Res. 25, 1–21 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Gerlowski L. & Jain, R.K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Algire, H. An adaptation of the transparent chamber technique to the mouse. J. Natl. Cancer Inst. USA. 4, 1–11 (1943).

    Google Scholar 

  19. Algire, H. & Chalkley, W. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl. Cancer Inst. USA 6, 73–85 (1945).

    Article  Google Scholar 

  20. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LSI 74T in SCID mice. Cancer Res. 52, 6553–6560 (1992).

    CAS  PubMed  Google Scholar 

  21. Dellian, B.P., Salehi, H.A., Yuan, F. & Jain R.K. Quantitation and physiological characterization of angiogenic vessels in mice: Effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149, 59–72 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Greenblatt, M. & Shubik P. Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. USA 41, 111–124 (1968).

    CAS  Google Scholar 

  23. Brooks, P.C. et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96 1815–1822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Briscoe, D.M. et al. The problem of chronic rejection: influence of leukocyte-endothelial interactions. Kidney Int. (suppl.) 58, S22–S27 (1997).

    CAS  Google Scholar 

  25. Levasseur, J.E., Wei E.P. Raper A.J. & Patterson, J.J.L. Detailed description of a cranial window technique for acute and chronic experiments. Stroke 6, 308–317 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, F. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568 (1994).

    CAS  PubMed  Google Scholar 

  27. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Nat. Acad. Sci. USA 93, 1476–514770 (1996).

    Google Scholar 

  28. Sckell, A.N. & Jain R.K. Tumor size dependence of growth factor in duced angiogenesis: Response in in vivo gel assays (abstract). Microcircuiation 4, 145 (1997).

  29. Zietman, A.L., Suit, H.D., Ramsay, J.R., Silobrcic, V. & Sedlacek, R.S. Quantitative studies on the transportability of murine and human tumors into the brain and subcutaneous tissues of NCr/Sed nude mice. Cancer Res. 48, 6510–6516 (1988).

    CAS  PubMed  Google Scholar 

  30. Joyner, W.L. Gilmore J.P. Tissues grafted into the cheek pouch of the hamster in Microcirculatory Technology (eds. Baker, C. H. & Nastuk, W. L.) 3–17 (Academic Press, New York, 1986).

    Google Scholar 

  31. Heuser, L.S. & Miller F.N. Differential macromolecular leakage from the vasculature of tumors. Cancer 57, 461–464 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Zeidman, I. The fate of circulating tumor cells: I. Passage of cells through capillaries. Cancer Res. 21, 38–39 (1961).

    CAS  PubMed  Google Scholar 

  33. Fukumura, D. Yuan F. Monsky W.L. Chen Y. & Jain R.K. Effect of host microenvironment on the microcircuiation of human colon adenocarcinoma LSI 74T. Am. J. Pathol. 151, 679–688 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Runkel S.N. & Milas, L. An intradermal assay for quantification and kinetics studies of tumor angiogenesis in mice. Radial. Res. 126, 237–243 (1991).

    Article  CAS  Google Scholar 

  35. Leighton, J., Spread of Cancer: Pathogenesis, Experimental Methods, Interpretations. (Academic Press, New York, 1967).

  36. Auerbach R., Arensman R., Kubai, L. & Folkman J. Tumor-induced angiogenesis: Lack of inhibition by irradiation. Int. J. Cancer 15, 241–245 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen, M., Shing, Y. & Folkman, J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Friedlander, M. et al. Definition of two angiogenic pathways by distinct α, integrins. Science 270, 1500–1502 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Taylor, C.M. & Weiss, J.B. The chick vitelline membrane as a test system for angiogenesis and antiangiogenesis (abstract). Int. J. Microcirc. Clin. Exp. 3 337 (1984).

    Google Scholar 

  40. Gimbrone, M.A., Leapman, S.B., Cotran, R.S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gimbrone, M.A. & Gullino, P.M. Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res. 36, 2611–2620 (1976).

    PubMed  Google Scholar 

  42. Brem, S.S., Gullino, P.M. & Medina, D. Angiogenesis: A marker for neoplastic transformation of mammary papillary hyperplasia. Science 195, 880–882 (1977).

    Article  CAS  PubMed  Google Scholar 

  43. Maiorana, A. & Gullino, P.M. Acquisition of angiogenic capacity and neoplastic transformation in the rat mammary gland. Cancer Res. 38, 4409–4414 (1978).

    CAS  PubMed  Google Scholar 

  44. Klintworth, G.K. Corneal Angiogenesis: A Comprehensive Critical Review (Springer, New York, 1991).

    Book  Google Scholar 

  45. Gimbrone, M.A.J., Cotran, R.S., Leapman, S.B. & Folkman, J. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52 413–427 (1974).

    Article  PubMed  Google Scholar 

  46. Muthukkaruppan, V.R. & Auerbach, R. Angiogenesis in the mouse cornea. Science 205, 1416–1418 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Schlenger, K., Höckel, M., Schwab, R., Frischmann-Berger, R. & Vaupel, P. How to improve the uterotomy healing: I. Effects of fibrin and tumor necrosis factor-α in the rat uterotomy model. J. Surg. Res. 56, 235–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Dvorak, H.F. et al. Fibrin containing gels induce angiogenesis: Implications for tumor stroma generation and wound healing. Lab. Invest. 57, 673–686 (1987).

    CAS  PubMed  Google Scholar 

  49. Mahadevan, V., Hart, I.R. & Lewis, G.P. Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique. Cancer Res. 49, 415–419 (1989).

    CAS  PubMed  Google Scholar 

  50. Plunkett, M.L. & Hailey, J.A., An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab. Invest. 62, 510–517 (1990).

    CAS  PubMed  Google Scholar 

  51. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67 519–528 (1992).

    CAS  PubMed  Google Scholar 

  52. Kowalski, J., Kwan, H.H., Prionas, S.D., Allison, A.C. & Fajardo, L.F. Characterization and applications of the disc angiogenesis system. Exp. Mol. Pathol. 56, 1–19 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Iain, R.K. Determinants of tumor blood flow: A review. Cancer Res. 48, 2641–2658 (1988).

    Google Scholar 

  54. Gasparini, G. Prognostic and predictive value of intra-tumoral microvessel density in human solid tumors, in TumorAngiogenesis. (eds. Bicknell, R., Lewis, C. E. & Ferrara, N.) 29–14, (Oxford University Press, Oxford, 1997).

  55. Gullino, P.M. & Grantham, F.H. Studies on the exchange of fluids between host and tumor: III Regulation of blood flow in hepatomas and other rat tumors. J. Natl. Cancer Inst. 28, 211–227 (1962).

    CAS  PubMed  Google Scholar 

  56. Less, J.R., Posner, M.C., Skalak, T., Wolmark, N. & Jain, R.K. Geometric resistance to blood flow and vascular network architecture in human colorectal carcinoma. Microcircuiation 4, 25–33 (1997).

    Article  CAS  Google Scholar 

  57. Brem, S., Cotran, R. & Folkman, J. Tumor angiogenesis: A quantitative method for histologic grading. J. Natl. Cancer Inst. 48, 347–356 (1972).

    CAS  PubMed  Google Scholar 

  58. Srivastava, A., Laidler, P., Hughes, L.E., Woodcock, J. & Shedden, E.J. Neovascularization in human cutaneous melanoma: A quantitative morphological and Doppler ultrasound study. Eur J. Cancer Clin. Oncol. 22, 1205–1209 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Weidner, N., Semple, J.P., Welch, W.R. & Folkman, J. Tumor angiogenesis and metastasis — Correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Perez-Atayde, A.R. et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 150, 815–821 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Montesano, R. Regulation of angiogenesis in vitro. Eur. J. Clin. Invest. 22 504–515 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Montesano, R., Vassalli, J.D., Baird, A., Guillemin, R. & Orci, L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. USA 83, 7297–7301 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sankar, S. et al. Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 97, 1436–1446 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jain, R.K. & Helmlinger, G. Tumor microenvironment and microcircuiation: A dynamic interplay, in An International WorkshopThe tumor microenvironment. (Martha's Vineyard, MA, 1997)

  65. Alessandri, G., Rayu, K. & Gullino, P.M. Mobilization of capillary endothelium in vitro induced by effectors of angiogeneses in vivo. Cancer Res. 43, 1790–1797 (1983).

    CAS  PubMed  Google Scholar 

  66. Alessandri, G., Cornaglia-Ferraris, P. & Gullino, P.M. Angiogenic and angiostatic microenvironment in tumors — Role of gangliosides. Acta. Oncol. 36, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Holmgren, L. O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Denekamp, J. Review article: Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br. J. Radial. 66, 181–196 (1993).

    Article  CAS  Google Scholar 

  69. Jain, R.K. et al. Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev. 15, 195–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Clark, E.R., Kirby-Smith, H.T., Rex, R.O. & Williams, R.G. Recent modifications in the method of studying living cells and tissues in transparent chambers inserted in the rabbit's ear. Anat. Rec. 47, 187–211 (1930).

    Article  Google Scholar 

  71. Leunig, M., Yuan F. Berk D.A., Gerweck L. & Jain, R.K. Angiogenesis and regeneration of grafted bone in dorsal skin chamber of nude mice. Lab. Invest. 71 300–307 (1994).

    CAS  PubMed  Google Scholar 

  72. Yamada, S. et al. Rolling in P-selectin-deficient mice is reduced but not eliminated in the dorsal skin. Blood 86, 3487–3492 (1995).

    CAS  PubMed  Google Scholar 

  73. Endrich, B., Intaglietta, M., Reinhold, H.S. & Gross, J.F. Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res. 39, 17–23 (1979).

    CAS  PubMed  Google Scholar 

  74. Dewhirst, M.W. et al. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int. J. Radiat. Oncol. Biol. Phys. 17, 91–99 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Eddy H.A. & Casarett, G.W. Development of the vascular system in the hamster malignant neurilemmoma. Microvasc. Res. 6 63–82 (1973).

    Article  CAS  PubMed  Google Scholar 

  76. Lutz, B.R., Fulton G.P., Patt D.I. & Handler A.H. The growth rate of tumor transplants in the cheek pouch of the hamster (Mesocricetus auratus). Cancer Res. 10, 231–232 (1950).

    Google Scholar 

  77. Sidky, Y.A. & Auerbach, R. Lymphocyte-induced angiogenesis: A quantitative and sensitive assay of the graft-vs-host reaction. J. Exp. Med. 141, 1084–1100 (1975).

    Article  CAS  PubMed  Google Scholar 

  78. Auerbach, R., Kubai, L., Knighton, D. & Folkman, J. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41, 391–394 (1974).

    Article  CAS  PubMed  Google Scholar 

  79. Norrby, K., Jakobsson, A. & Sörbo, J. Quantitative angiogenesis in spreads of intact rat mesenteric windows. Microvasc. Res. 39, 341–348 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Luckè, B. & Schlumberger, H.G. The effect of X-rays on frog carcinoma studied by direct microscopic examination of living intra-ocular transplants. Cancer Res. 10, 231 (1950).

  81. Less, J.R., Skalak, T.C., Sevick, E.M. & Jain R.K. Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions. Cancer Res. 51, 265–273 (1991).

    CAS  PubMed  Google Scholar 

  82. Gullino, P.M. & Grantham, F.H. Studies on the exchange of fluids between host and tumor. I. A method for growing “Tissue-isolated” tumors in laboratory animals. J. Natl. Cancer. Inst. 27, 679–693 (1961).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R., Schlenger, K., Hockel, M. et al. Quantitative angiogenesis assays: Progress and problems. Nat Med 3, 1203–1208 (1997). https://doi.org/10.1038/nm1197-1203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing