Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth

Abstract

Tumor cells are elusive targets for immunotherapy due to their heterogeneity and genetic instability. Here we describe a novel, oral DNA vaccine that targets stable, proliferating endothelial cells in the tumor vasculature rather than tumor cells. Targeting occurs through upregulated vascular-endothelial growth factor receptor 2 (FLK-1) of proliferating endothelial cells in the tumor vasculature. This vaccine effectively protected mice from lethal challenges with melanoma, colon carcinoma and lung carcinoma cells and reduced growth of established metastases in a therapeutic setting. CTL-mediated killing of endothelial cells indicated breaking of peripheral immune tolerance against this self antigen, resulting in markedly reduced dissemination of spontaneous and experimental pulmonary metastases. Angiogenesis in the tumor vasculature was suppressed without impairment of fertility, neuromuscular performance or hematopoiesis, albeit with a slight delay in wound healing. Our strategy circumvents problems in targeting of genetically unstable tumor cells. This approach may provide a new strategy for the rational design of cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction and functionality of expression vector.
Figure 2: Effect of the FLK-1 based DNA vaccine on tumor growth.
Figure 3: Involvement of CD8+ T cells.
Figure 4: Inhibition of VEGF or bFGF-induced angiogenesis.
Figure 5: Effect of vaccination on wound healing and fertility.

Similar content being viewed by others

References

  1. Folkman, J. Addressing tumor blood vessels. Nature Biotechnol. 15, 510 (1997).

  2. Folkman, J. Angiogenesis and angiogenesis inhibition: An overview. EXS 79, 1–8 (1997).

    CAS  PubMed  Google Scholar 

  3. Folkman, J. Antiangiogenic gene therapy. Proc. Natl. Acad. Sci. USA 95, 9064–9066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O'Reilly, M.S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2, 689–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. O'Reilly, M.S. et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Augustin, H.G. Antiangiogenic tumor therapy: Will it work? Trends Pharmacol. Sci. 19, 216–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  8. Folkman, J. Tumor angiogenesis and tissue factor. Nature Med. 2, 167–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Goede, V. et al. Prognostic value of angiogenesis in mammary tumors. Anticancer Res. 18, 2199–2202 (1998).

    CAS  PubMed  Google Scholar 

  10. Folkman, J. Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc. Natl. Acad. Sci. USA 98, 398–400 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heidenreich, R., Kappel, A. & Breier, G. Tumor endothelium-specific transgene expression directed by vascular endothelial growth factor receptor-2 (FLK-1) promoter/enhancer sequences. Cancer Res. 60, 6142–6147 (2000).

    CAS  PubMed  Google Scholar 

  12. Hicklin, D.J., Marincola, F.M. & Ferrone, S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol. Med. Today 5, 178–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ruiter, D.J., Mattijssen, V., Broecker, E.B. & Ferrone, S. MHC antigens in human melanomas. Semin. Cancer Biol. 2, 35–45 (1991).

    CAS  PubMed  Google Scholar 

  14. Cheng, W.F. et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest. 108, 669–678 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei, Y.Q. et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nature Med. 6, 1160–1166 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kisker, O. et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 61, 7669–7674 (2001).

    CAS  PubMed  Google Scholar 

  17. Cross, M.J. & Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signaling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Dias, S. et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest. 106, 511–521 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drake, C.J., LaRue, A., Ferrara, N. & Little, C.D. VEGF regulates cell behavior during vasculogenesis. Dev. Biol. 224, 178–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ferrara, N. VEGF: An update on biological and therapeutic aspects. Curr. Opin. Biotechnol. 11, 617–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Folkman, J. & D'Amore, P.A. Blood vessel formation: what is its molecular basis? Cell 87, 1153–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. McMahon, G. VEGF receptor signaling in tumor angiogenesis. Oncologist 5 Suppl 1, 3–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Ortega, N., Hutchings, H. & Plouet, J. Signal relays in the VEGF system. Front Biosci. 4, D141–D152 (1999).

    CAS  PubMed  Google Scholar 

  24. Strawn, L.M. et al. FLK-1 as a target for tumor growth inhibition. Cancer Res. 56, 3540–3545 (1996).

    CAS  PubMed  Google Scholar 

  25. Taraboletti, G. & Margosio, B. Antiangiogenic and antivascular therapy for cancer. Curr. Opin. Pharmacol. 1, 378–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ochsenbein, A.F. et al. Roles of tumor localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411, 1058–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hata, Y., Rook, S.L. & Aiello, L.P. Basic fibroblast growth factor induces expression of VEGF receptor KDR through a protein kinase C and p44/p42 mitogen-activated protein kinase-dependent pathway. Diabetes 48, 1145–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Niethammer, A.G. et al. An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine 20, 421–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Niethammer, A.G. et al. Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res. 61, 6178–6184 (2001).

    CAS  PubMed  Google Scholar 

  31. Darji, A. et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765–775 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Lode, H.N. et al. Gene therapy with a single chain interleukin 12 fusion protein induces T cell-dependent protective immunity in a syngeneic model of murine neuroblastoma. Proc. Natl. Acad. Sci. USA 95, 2475–2480 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schrama, D. et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14, 111–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kaesler, S., Regenbogen, J., Durka, S., Goppelt, A. & Werner, S. The healing skin wound: A novel site of action of the chemokine c10. Cytokine 17, 157–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Werner, S. et al. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl. Acad. Sci. USA 89, 6896–6900 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barlow, C. et al. Atm-deficient mice: A paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Paylor, R. et al. Alpha7 nicotinic receptor subunits are not necessary for hippocampal- dependent learning or sensorimotor gating: A behavioral characterization of Acra7-deficient mice. Learn. Mem. 5, 302–316 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Jameson and D. Stupack for advice and technical assistance; and C. Beaton for editorial assistance. A.G.N. is a fellow of the Deutsche Krebshilfe. H.W. is a fellow of the Deutsche Forschungsgemeinschaft. B.P.E. is supported by a grant from the American Heart Association and NIH grant HL 69046. This study was supported by NIH grant CA 83856 (R.A.R.), the Tobacco-Related Disease Research Program Grant 9RT-0017 (R.A.R), Grant DAMD M-1-0562 from the Department of Defense (R.X.), and a Grant from Lexigen Pharmaceuticals, Inc., Lexington, Massachusetts (R.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph A. Reisfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niethammer, A., Xiang, R., Becker, J. et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8, 1369–1375 (2002). https://doi.org/10.1038/nm1202-794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1202-794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing