Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A photoconvertible reporter of the ubiquitin-proteasome system in vivo

A Corrigendum to this article was published on 01 July 2010

This article has been updated

Abstract

The ubiquitin-proteasome system (UPS) orchestrates many cellular and tissue-specific processes by degrading damaged and key regulatory proteins. To enable investigation of UPS activity in different cell types in a living animal, we developed a photoconvertible fluorescent UPS reporter system for live imaging and quantification of protein degradation in Caenorhabditis elegans. Our reporter consists of the photoconvertible fluorescent protein Dendra2 targeted for proteasomal degradation by fusion to the UbG76V mutant form of ubiquitin. In contrast to previous reporters, this system permits quantification of UPS activity independently of protein synthesis. Our reporter revealed that UPS-mediated protein degradation varies in a cell type–specific and age-dependent manner in C. elegans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UPS-mediated protein degradation in body-wall muscle cells.
Figure 2: Knockdown of the proteasome decreases degradation of the UPS reporter proteins.
Figure 3: UPS activity in GABAergic dorsorectal neurons.
Figure 4: UPS activity in dopaminergic neurons.
Figure 5: Aging decreases UPS activity in dorsorectal neurons but not in body-wall muscle cells.

Similar content being viewed by others

Change history

  • 17 June 2010

    In the version of this paper originally published, a reference to previous work on the use of Dendra2 as a reporter for protein stability in cultured cells should have been included (ref. 35). The error has been corrected in the PDF and HTML versions of the article.

References

  1. Hanna, J. & Finley, D. A proteasome for all occasions. FEBS Lett. 581, 2854–2861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paul, S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 30, 1172–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Vernace, V.A., Schmidt-Glenewinkel, T. & Figueiredo-Pereira, M.E. Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6, 599–606 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M.G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18, 538–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Holmberg, C.I., Staniszewski, K.E., Mensah, K.N., Matouschek, A. & Morimoto, R.I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 23, 4307–4318 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindsten, K., Menéndez-Benito, V., Masucci, M.G. & Dantuma, N.P. A transgenic mouse model of the ubiquitin/proteasome system. Nat. Biotechnol. 21, 897–902 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kumarapeli, A.R. et al. A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin. FASEB J. 19, 2051–2053 (2005).

    Article  PubMed  Google Scholar 

  9. Bove, J. et al. Proteasome inhibition and Parkinson′s disease modeling. Ann. Neurol. 60, 260–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Cook, C. et al. Aging is not associated with proteasome impairment in UPS reporter mice. PLoS One 4, e5888 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alvarez-Castelao, B., Martin-Guerrero, I., Garcia-Orad, A. & Castano, J.G. CMV promoter up-regulation is the major cause of increased protein levels of unstable reporter proteins after treatment of living cells with proteasome inhibitors. J. Biol. Chem. 41, 28253–28262 (2009).

    Article  Google Scholar 

  12. Johnson, E.S., Bartel, B., Seufert, W. & Varshavsky, A. Ubiquitin as a degradation signal. EMBO J. 11, 497–505 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat. Protocols 2, 2024–2032 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Jantsch-Plunger, V. & Fire, A. Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans. J. Biol. Chem. 269, 27021–27028 (1994).

    CAS  PubMed  Google Scholar 

  15. Shimada, M., Kanematsu, K., Tanaka, K., Yokosawa, H. & Kawahara, H. Proteasomal ubiquitin receptor RPN-10 controls sex determination in Caenorhabditis elegans. Mol. Biol. Cell 17, 5356–5371 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 16, 6020–6028 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stack, J.H., Whitney, M., Rodems, S.M. & Pollok, B.A. A ubiquitin-based tagging system for controlled modulation of protein stability. Nat. Biotechnol. 18, 1298–1302 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Verhoef, L.G. et al. Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates. FASEB J. 1, 123–133 (2008).

    Google Scholar 

  19. Kim, H.T., Kim, K.P., Uchiki, T., Gygi, S.P. & Goldberg, A.L. S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J. 13, 1867–1877 (2009).

    Article  Google Scholar 

  20. Breusing, N. & Grune, T. Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol. Chem. 389, 203–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Yun, C. et al. Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105, 7094–7099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghazi, A., Henis-Korenblit, S. & Kenyon, C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc. Natl. Acad. Sci. USA 104, 5947–5952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walker, G.A. & Lithgow, G.J. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2, 131–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yokoyama, K. et al. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett. 516, 53–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hsu, A.L., Murphy, C.T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Mehta, R. et al. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324, 1196–1198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, W., Gao, B., Lee, S.M., Bennett, K. & Fang, D. RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. Dev. Cell 12, 235–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Morley, J.F. & Morimoto, R.I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herndon, L.A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brignull, H.R., Moore, F.E., Tang, S.J. & Morimoto, R.I. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 26, 7597–7606 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, L. et al. Method for real-time monitoring of protein degradation at the single cell level. Biotechniques 42, 446–450 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to C.I.H. from the Academy of Finland (113485 and 118450), the International Human Frontier Science Program Organization, Biocentrum Helsinki, the Sigrid Jusélius Foundation and the Magnus Ehrnrooth Foundation. G.H. was additionally supported by the University of Helsinki and O.M. by the Helsinki Biomedical Graduate School. We thank members of the Caenorhabditis Genetics Center for providing the N2 wild-type worms, S. Mitani (National Bioresource Project for the Nematode, Japan) for the rpn-10 mutant worms, R.I. Morimoto (Northwestern University) for the PF25B3.3::yfp expression vector and members of the Biomedicum Helsinki Molecular Imaging Unit for their help with confocal microscopy and imaging.

Author information

Authors and Affiliations

Authors

Contributions

G.H. and O.M. developed the method, performed the experiments, analyzed the data, made the figures and wrote the paper. C.I.H. developed the method, analyzed the data, wrote the paper and supported the project.

Corresponding author

Correspondence to Carina I Holmberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–2 (PDF 2945 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, G., Matilainen, O. & Holmberg, C. A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7, 473–478 (2010). https://doi.org/10.1038/nmeth.1460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing