Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Spatiotemporal control of gene expression by a light-switchable transgene system

Abstract

We developed a light-switchable transgene system based on a synthetic, genetically encoded light-switchable transactivator. The transactivator binds promoters upon blue-light exposure and rapidly initiates transcription of target transgenes in mammalian cells and in mice. This transgene system provides a robust and convenient way to spatiotemporally control gene expression and can be used to manipulate many biological processes in living systems with minimal perturbation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LightOn gene expression system.
Figure 2: Time course of light-switchable gene expression using LightOn in HEK293 cells transiently transfected with pGAVPO and pU5-Gluc.
Figure 3: Graded response of mCherry expression under different blue-light irradiances.
Figure 4: Light-switchable transgene expression in mice.

Similar content being viewed by others

References

  1. Braselmann, S., Graninger, P. & Busslinger, M. Proc. Natl. Acad. Sci. USA 90, 1657–1661 (1993).

    Article  CAS  Google Scholar 

  2. Gossen, M. et al. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  3. Cambridge, S.B., Davis, R.L. & Minden, J.S. Science 277, 825–828 (1997).

    Article  CAS  Google Scholar 

  4. Minden, J., Namba, R., Mergliano, J. & Cambridge, S. Sci. STKE 2000, l1 (2000).

    Article  Google Scholar 

  5. Cambridge, S.B. et al. Nat. Methods 6, 527–531 (2009).

    Article  CAS  Google Scholar 

  6. Kamei, Y. et al. Nat. Methods 6, 79–81 (2009).

    Article  CAS  Google Scholar 

  7. Shimizu-Sato, S., Huq, E., Tepperman, J.M. & Quail, P.H. Nat. Biotechnol. 20, 1041–1044 (2002).

    Article  CAS  Google Scholar 

  8. Levskaya, A. et al. Nature 438, 441–442 (2005).

    Article  CAS  Google Scholar 

  9. Yazawa, M., Sadaghiani, A.M., Hsueh, B. & Dolmetsch, R.E. Nat. Biotechnol. 27, 941–945 (2009).

    Article  CAS  Google Scholar 

  10. Kennedy, M.J. et al. Nat. Methods 7, 973–975 (2010).

    Article  CAS  Google Scholar 

  11. Ye, H., Daoud-El Baba, M., Peng, R.W. & Fussenegger, M. Science 332, 1565–1568 (2011).

    Article  CAS  Google Scholar 

  12. Hong, M. et al. Structure 16, 1019–1026 (2008).

    Article  CAS  Google Scholar 

  13. Zoltowski, B.D. et al. Science 316, 1054–1057 (2007).

    Article  CAS  Google Scholar 

  14. Zoltowski, B.D. & Crane, B.R. Biochemistry 47, 7012–7019 (2008).

    Article  CAS  Google Scholar 

  15. Lamb, J.S., Zoltowski, B.D., Pabit, S.A., Crane, B.R. & Pollack, L. J. Am. Chem. Soc. 130, 12226–12227 (2008).

    Article  CAS  Google Scholar 

  16. Zoltowski, B.D., Vaccaro, B. & Crane, B.R. Nat. Chem. Biol. 5, 827–834 (2009).

    Article  CAS  Google Scholar 

  17. Shaw, G. & Kamen, R. Cell 46, 659–667 (1986).

    Article  CAS  Google Scholar 

  18. Deisseroth, K. Nat. Methods 8, 26–29 (2011).

    Article  CAS  Google Scholar 

  19. Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  20. Groskreutz, D.J., Sliwkowski, M.X. & Gorman, C.M. J. Biol. Chem. 269, 6241–6245 (1994).

    CAS  PubMed  Google Scholar 

  21. Liu, F., Song, Y. & Liu, D. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  Google Scholar 

  22. Ferrari, D., Wesselborg, S., Bauer, M.K. & Schulze-Osthoff, K. J. Cell Biol. 139, 1635–1643 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.H. Yu and J.Z. Chen for their suggestions, and Z.M. Du, Z.C. Ma, J.H. Wang, W.T. Zhu, X.Y. Feng and Y.Z. Zhao for technical assistance. This work was supported by the National Natural Science Foundation of China (grants 31170815, 31071260 and 90713026), the 863 Program (grant no. 2006AA02Z160), the Fok Ying Tung Education Foundation (grant 111022), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Dawn Program of Shanghai Education Commission (grant 11SG31), Doctoral Fund of Ministry of Education of China (grant 20100074110010), the Fundamental Research Funds for the Central Universities and the 111 Project (grant B07023).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. conceived of the concept; Y.Y., X.W. and X.C. designed the experiments and analysed the data; X.W. preformed the molecular cloning, protein characterization and cell culture experiments; X.C. preformed animal studies; and Y.Y. wrote the manuscript.

Corresponding author

Correspondence to Yi Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–2, Supplementary Note (PDF 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9, 266–269 (2012). https://doi.org/10.1038/nmeth.1892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing