Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors

Abstract

In contrast with conventional NMDA receptor–dependent synaptic plasticity, the synaptic events controlling the plasticity of GluR2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) remain unclear. At parallel fiber synapses onto cerebellar stellate cells, Ca2+ influx through AMPARs triggers a switch in AMPAR subunit composition, resulting in loss of Ca2+ permeabilty. Paradoxically, synaptically induced depolarization will suppress this Ca2+ entry by promoting polyamine block of CP-AMPARs. We therefore examined other mechanisms that may control this receptor regulation under physiological conditions. We found that activation of both mGluRs and CP-AMPARs is necessary and sufficient to drive an AMPAR subunit switch and that by enhancing mGluR activity, GABABR activation promotes this plasticity. Furthermore, we found that mGluRs and GABABRs are tonically activated, thus setting the basal tone for EPSC amplitude and rectification. Regulation by both excitatory and inhibitory inputs provides an unexpected mechanism that determines the potential of these synapses to show dynamic changes in AMPAR Ca2+ permeability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mGluR agonist DHPG induces a persistent synaptic depression and change in EPSC rectification.
Figure 2: DHPG action involves postsynaptic CP-AMPARs and Ca2+ elevation.
Figure 3: DHPG-induced changes in rectification index do not involve cannabinoid release or CB1R activation, but require protein synthesis.
Figure 4: Baclofen induces a persistent change in EPSC rectification.
Figure 5: mGluR and GABAB receptors are tonically active.
Figure 6: Synaptic activation of mGluRs induces a change in AMPAR properties.

Similar content being viewed by others

References

  1. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, S.Q. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lei, S. & McBain, C.J. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J. Neurosci. 24, 2112–2121 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gardner, S.M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ge, W.P. et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312, 1533–1537 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ho, M.T. et al. Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses. J. Neurosci. 27, 11651–11662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bowie, D., Lange, G.D. & Mayer, M.L. Activity-dependent modulation of glutamate receptors by polyamines. J. Neurosci. 18, 8175–8185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Aizenman, C.D., Muñoz-Elías, G. & Cline, H.T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron Diversity series: Fast in, fast out—temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Chávez, A.E., Singer, J.H. & Diamond, J.S. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443, 705–708 (2006).

    Article  PubMed  Google Scholar 

  17. Clark, B.A. & Cull-Candy, S.G. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J. Neurosci. 22, 4428–4436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter, A.G. & Regehr, W.G. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J. Neurosci. 20, 4423–4434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mittmann, W., Koch, U. & Hausser, M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. (Lond.) 563, 369–378 (2005).

    Article  CAS  Google Scholar 

  20. Mann-Metzer, P. & Yarom, Y. Pre- and postsynaptic inhibition mediated by GABA(B) receptors in cerebellar inhibitory interneurons. J. Neurophysiol. 87, 183–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Rancillac, A. & Crepel, F. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J. Physiol. (Lond.) 554, 707–720 (2004).

    Article  CAS  Google Scholar 

  22. Karakossian, M.H. & Otis, T.S. Excitation of cerebellar interneurons by group I metabotropic glutamate receptors. J. Neurophysiol. 92, 1558–1565 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hirono, M., Yoshioka, T. & Konishi, S. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat. Neurosci. 4, 1207–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Häusser, M. & Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  PubMed  Google Scholar 

  25. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Feldmeyer, D. et al. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat. Neurosci. 2, 57–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Bähring, R. & Mayer, M.L. An analysis of philanthotoxin block for recombinant rat GluR6(Q) glutamate receptor channels. J. Physiol. (Lond.) 509, 635–650 (1998).

    Article  Google Scholar 

  30. Chevaleyre, V., Takahashi, K.A. & Castillo, P.E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Beierlein, M. & Regehr, W.G. Local interneurons regulate synaptic strength by retrograde release of endocannabinoids. J. Neurosci. 26, 9935–9943 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hashimotodani, Y., Ohno-Shosaku, T., Maejima, T., Fukami, K. & Kano, M. Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocanabinoid release. Neuropharmacology 54, 58–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Soler-Llavina, G.J. & Sabatini, B.L. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat. Neurosci. 9, 798–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, S.J. & Cull-Candy, S.G. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat. Neurosci. 8, 768–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ango, F. et al. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411, 962–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hartmann, B. et al. The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 44, 637–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Brasnjo, G. & Otis, T.S. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31, 607–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Baude, A. et al. The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11, 771–787 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhry, F.A. et al. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Chadderton, P., Margrie, T.W. & Hausser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Jörntell, H. & Ekerot, C.F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Szapiro, G. & Barbour, B. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat. Neurosci. 10, 735–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Nosyreva, E.D. & Huber, K.M. Developmental switch in synaptic mechanisms of hippocampal metabotropic glutamate receptor–dependent long-term depression. J. Neurosci. 25, 2992–3001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zakharenko, S.S., Zablow, L. & Siegelbaum, S.A. Altered presynaptic vesicle release and cycling during mGluR-dependent LTD. Neuron 35, 1099–1110 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Xiao, M.Y., Zhou, Q. & Nicoll, R.A. Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology 41, 664–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Moult, P.R. et al. Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptor–mediated long-term depression. J. Neurosci. 26, 2544–2554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Linden, D.J. The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity or unitary conductance. Proc. Natl. Acad. Sci. USA 98, 14066–14071 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature 417, 649–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Kamikubo, Y. et al. Postsynaptic GABAB receptor signaling enhances LTD in mouse cerebellar Purkinje cells. J. Physiol. (Lond.) 585, 549–563 (2007).

    Article  CAS  Google Scholar 

  50. Lawrence, J.J. & McBain, C.J. Interneuron diversity series: containing the detonation–feedforward inhibition in the CA3 hippocampus. Trends Neurosci. 26, 631–640 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Bats, P. Chadderton, B. Clark and D. Soto for helpful discussion and comments on the manuscript. This work was supported by a Wellcome Trust Programme Grant (S.G.C.-C. and M.F.), a Wellcome Trust Studentship (L.K.) and a Royal Society-Wolfson Research Award (S.G.C.-C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G Cull-Candy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, L., Farrant, M. & Cull-Candy, S. Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nat Neurosci 12, 593–601 (2009). https://doi.org/10.1038/nn.2309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing