Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology

Abstract

The peripheral nervous and immune systems are traditionally thought of as serving separate functions. The line between them is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells, and, in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also seem to contribute to immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Noxious stimuli, microbial and inflammatory recognition pathways trigger activation of the peripheral nervous system.
Figure 2: Neuronal factors released from nociceptor sensory neurons directly drive leukocyte chemotaxis, vascular hemodynamics and the immune response.
Figure 3
Figure 4: Sensory and autonomic nervous systems modulate local and systemic immune responses respectively.

Similar content being viewed by others

References

  1. Sauer, S.K., Reeh, P.W. & Bove, G.M. Noxious heat-induced CGRP release from rat sciatic nerve axons in vitro. Eur. J. Neurosci. 14, 1203–1208 (2001).

    Article  CAS  Google Scholar 

  2. Edvinsson, L., Ekman, R., Jansen, I., McCulloch, J. & Uddman, R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J. Cereb. Blood Flow Metab. 7, 720–728 (1987).

    Article  CAS  Google Scholar 

  3. McCormack, D.G., Mak, J.C., Coupe, M.O. & Barnes, P.J. Calcitonin gene-related peptide vasodilation of human pulmonary vessels. J. Appl. Physiol. 67, 1265–1270 (1989).

    Article  CAS  Google Scholar 

  4. Saria, A. Substance P in sensory nerve fibres contributes to the development of oedema in the rat hind paw after thermal injury. Br. J. Pharmacol. 82, 217–222 (1984).

    Article  CAS  Google Scholar 

  5. Brain, S.D. & Williams, T.J. Interactions between the tachykinins and calcitonin gene-related peptide lead to the modulation of oedema formation and blood flow in rat skin. Br. J. Pharmacol. 97, 77–82 (1989).

    Article  CAS  Google Scholar 

  6. Fryer, A.D. et al. Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J. Clin. Invest. 116, 228–236 (2006).

    Article  CAS  Google Scholar 

  7. Ansel, J.C., Brown, J.R., Payan, D.G. & Brown, M.A. Substance P selectively activates TNF-alpha gene expression in murine mast cells. J. Immunol. 150, 4478–4485 (1993).

    CAS  PubMed  Google Scholar 

  8. Ding, W., Stohl, L.L., Wagner, J.A. & Granstein, R.D. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol. 181, 6020–6026 (2008).

    Article  CAS  Google Scholar 

  9. Hosoi, J. et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363, 159–163 (1993).

    Article  CAS  Google Scholar 

  10. Mikami, N. et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J. Immunol. 186, 6886–6893 (2011).

    Article  CAS  Google Scholar 

  11. Rochlitzer, S. et al. The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function. Clin. Exp. Allergy 41, 1609–1621 (2011).

    Article  CAS  Google Scholar 

  12. Cyphert, J.M. et al. Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction. J. Immunol. 182, 7430–7439 (2009).

    Article  CAS  Google Scholar 

  13. Levine, J.D. et al. Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226, 547–549 (1984).

    Article  CAS  Google Scholar 

  14. Levine, J.D., Khasar, S.G. & Green, P.G. Neurogenic inflammation and arthritis. Ann. NY Acad. Sci. 1069, 155–167 (2006).

    Article  Google Scholar 

  15. Engel, M.A. et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology 141, 1346–1358 (2011).

    Article  CAS  Google Scholar 

  16. Ostrowski, S.M., Belkadi, A., Loyd, C.M., Diaconu, D. & Ward, N.L. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J. Invest. Dermatol. 131, 1530–1538 (2011).

    Article  CAS  Google Scholar 

  17. Caceres, A.I. et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl. Acad. Sci. USA 106, 9099–9104 (2009).

    Article  CAS  Google Scholar 

  18. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  19. Bessac, B.F. et al. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J. 23, 1102–1114 (2009).

    Article  CAS  Google Scholar 

  20. Cruz-Orengo, L. et al. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol. Pain 4, 30 (2008).

    Article  Google Scholar 

  21. Trevisani, M. et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. USA 104, 13519–13524 (2007).

    Article  CAS  Google Scholar 

  22. Janeway, C.A. Jr. & Medzhitov, R. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349–350 (1998).

    Article  Google Scholar 

  23. Matzinger, P. An innate sense of danger. Ann. NY Acad. Sci. 961, 341–342 (2002).

    Article  Google Scholar 

  24. Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  Google Scholar 

  25. Liu, T., Xu, Z.Z., Park, C.K., Berta, T. & Ji, R.R. Toll-like receptor 7 mediates pruritus. Nat. Neurosci. 13, 1460–1462 (2010).

    Article  CAS  Google Scholar 

  26. Diogenes, A., Ferraz, C.C., Akopian, A.N., Henry, M.A. & Hargreaves, K.M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res. 90, 759–764 (2011).

    Article  CAS  Google Scholar 

  27. Qi, J. et al. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J. Immunol. 186, 6417–6426 (2011).

    Article  CAS  Google Scholar 

  28. Cockayne, D.A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  Google Scholar 

  29. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  Google Scholar 

  30. Souslova, V. et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017 (2000).

    Article  CAS  Google Scholar 

  31. de Rivero Vaccari, J.P., Lotocki, G., Marcillo, A.E., Dietrich, W.D. & Keane, R.W. A molecular platform in neurons regulates inflammation after spinal cord injury. J. Neurosci. 28, 3404–3414 (2008).

    Article  Google Scholar 

  32. Link, T.M. et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 11, 232–239 (2010).

    Article  CAS  Google Scholar 

  33. Turner, H., del Carmen, K.A. & Stokes, A. Link between TRPV channels and mast cell function. Handb. Exp. Pharmacol 179, 457–471 (2007).

    Article  CAS  Google Scholar 

  34. Binshtok, A.M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062–14073 (2008).

    Article  CAS  Google Scholar 

  35. Zhang, X.C., Kainz, V., Burstein, R. & Levy, D. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain 152, 140–149 (2011).

    Article  CAS  Google Scholar 

  36. Samad, T.A. et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    Article  CAS  Google Scholar 

  37. Veres, T.Z. et al. Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 37, 553–561 (2007).

    Article  CAS  Google Scholar 

  38. Smith, C.H., Barker, J.N., Morris, R.W., MacDonald, D.M. & Lee, T.H. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J. Immunol. 151, 3274–3282 (1993).

    CAS  PubMed  Google Scholar 

  39. Dunzendorfer, S., Meierhofer, C. & Wiedermann, C.J. Signaling in neuropeptide-induced migration of human eosinophils. J. Leukoc. Biol. 64, 828–834 (1998).

    Article  CAS  Google Scholar 

  40. Ganor, Y., Besser, M., Ben-Zakay, N., Unger, T. & Levite, M. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 170, 4362–4372 (2003).

    Article  CAS  Google Scholar 

  41. Czepielewski, R.S. et al. Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc. Natl. Acad. Sci. USA 109, 547–552 (2012).

    Article  CAS  Google Scholar 

  42. Brogden, K.A., Guthmiller, J.M., Salzet, M. & Zasloff, M. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol. 6, 558–564 (2005).

    Article  CAS  Google Scholar 

  43. Jimeno, R. et al. Effect of VIP on the balance between cytokines and master regulators of activated helper T cells. Immunol. Cell Biol. 90, 178–186 (2012).

    Article  CAS  Google Scholar 

  44. Razavi, R. et al. TRPV1+ sensory neurons control β cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123–1135 (2006).

    Article  CAS  Google Scholar 

  45. Cunin, P. et al. The tachykinins substance P and hemokinin-1 favor the generation of human memory Th17 cells by inducing IL-1β, IL-23, and TNF-like 1A expression by monocytes. J. Immunol. 186, 4175–4182 (2011).

    Article  CAS  Google Scholar 

  46. Andersson, U. & Tracey, K.J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30, 313–335 (2012).

    Article  CAS  Google Scholar 

  47. de Jonge, W.J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  CAS  Google Scholar 

  48. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  Google Scholar 

  49. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  Google Scholar 

  50. Wong, C.H., Jenne, C.N., Lee, W.Y., Leger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health for support (2R37NS039518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J Woolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, I., von Hehn, C. & Woolf, C. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci 15, 1063–1067 (2012). https://doi.org/10.1038/nn.3144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing