Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A polarizing question: do M1 and M2 microglia exist?

Abstract

Microglial research has entered a fertile, dynamic phase characterized by novel technologies including two-photon imaging, whole-genome transcriptomic and epigenomic analysis with complementary bioinformatics, unbiased proteomics, cytometry by time of flight (CyTOF; Fluidigm) cytometry, and complex high-content experimental models including slice culture and zebrafish. Against this vivid background of newly emerging data, investigators will encounter in the microglial research literature a body of published work using the terminology of macrophage polarization, most commonly into the M1 and M2 phenotypes. It is the assertion of this opinion piece that microglial polarization has not been established by research findings. Rather, the adoption of this schema was undertaken in an attempt to simplify data interpretation at a time when the ontogeny and functional significance of microglia had not yet been characterized. Now, terminology suggesting established meaningful pathways of microglial polarization hinders rather than aids research progress and should be discarded.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tremblay, M.E., Lecours, C., Samson, L., Sánchez-Zafra, V. & Sierra, A. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia. Front. Neuroanat. 9, 45 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alliot, F., Lecain, E., Grima, B. & Pessac, B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc. Natl. Acad. Sci. USA 88, 1541–1545 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Gomez Perdiguero, E., Schulz, C. & Geissmann, F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61, 112–120 (2013).

    Article  PubMed  Google Scholar 

  7. Xu, J. et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev. Cell 34, 632–641 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, S.K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W. & Rossi, F.M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tremblay, M.E. et al. The role of microglia in the healthy brain. J. Neurosci. 31, 16064–16069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fields, R.D. et al. Glial biology in learning and cognition. Neuroscientist 20, 426–431 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Schafer, D.P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., Du, X.F., Liu, C.S., Wen, Z.L. & Du, J.L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Parkhurst, C.N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Panatier, A. & Robitaille, R. The soothing touch: microglial contact influences neuronal excitability. Dev. Cell 23, 1125–1126 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Hickman, S.E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiu, I.M. et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 4, 385–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Link, V.M., Gosselin, D. & Glass, C.K. Mechanisms underlying the selection and function of macrophage-specific enhancers. Cold Spring Harb. Symp. Quant. Biol. 027367 (2015).

  30. Hellwig, S., Heinrich, A. & Biber, K. The brain's best friend: microglial neurotoxicity revisited. Front. Cell. Neurosci. 7, 71 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hellwig, S. et al. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Sci. Rep. 5, 14624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lyons, D.A. & Talbot, W.S. Glial cell development and function in zebrafish. Cold Spring Harb. Perspect. Biol. 7, a020586 (2015).

    Article  PubMed Central  Google Scholar 

  33. Oosterhof, N., Boddeke, E. & van Ham, T.J. Immune cell dynamics in the CNS: Learning from the zebrafish. Glia 63, 719–735 (2015).

    Article  PubMed  Google Scholar 

  34. Martinez, F.O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, C.C., Nakamura, M.C. & Hsieh, C.L. Brain trauma elicits non-canonical macrophage activation states. J. Neuroinflammation 13, 117 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Paolicelli, R.C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Paolicelli, R.C. & Gross, C.T. Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol. 7, 77–83 (2011).

    Article  PubMed  Google Scholar 

  40. Pont-Lezica, L. et al. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur. J. Neurosci. 39, 1551–1557 (2014).

    Article  PubMed  Google Scholar 

  41. Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Wes, P.D., Holtman, I.R., Boddeke, E.W., Möller, T. & Eggen, B.J. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 64, 197–213 (2016).

    Article  PubMed  Google Scholar 

  43. Holtman, I.R. et al. Glia Open Access Database (GOAD): a comprehensive gene expression encyclopedia of glia cells in health and disease. Glia 63, 1495–1506 (2015).

    Article  PubMed  Google Scholar 

  44. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bennett, M.L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 113, E1738–E1746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morganti, J.M., Riparip, L.K. & Rosi, S. Call off the dog(ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS One 11, e0148001 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kan, M.J. et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J. Neurosci. 35, 5969–5982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murray, P.J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ransohoff, R.M. & Cardona, A.E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Adams, R.A. et al. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med. 204, 571–582 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Obermeier, B., Daneman, R. & Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neher, J.J. et al. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl. Acad. Sci. USA 110, E4098–E4107 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown, G.C. & Neher, J.J. Eaten alive! Cell death by primary phagocytosis: 'phagoptosis'. Trends Biochem. Sci. 37, 325–332 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Thored, P. et al. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835–849 (2009).

    Article  PubMed  Google Scholar 

  58. Kohman, R.A., DeYoung, E.K., Bhattacharya, T.K., Peterson, L.N. & Rhodes, J.S. Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain Behav. Immun. 26, 803–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Crotti, A. & Ransohoff, R.M. Microglial physiology and pathophysiology: Insights from genome wide expression profiling. Immunity 44, 505–515 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Amit, I., Winter, D.R. & Jung, S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 17, 18–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Romanoski, C.E., Link, V.M., Heinz, S. & Glass, C.K. Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends Immunol. 36, 507–518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olah, M. et al. An optimized protocol for the acute isolation of human microglia from autopsy brain samples. Glia 60, 96–111 (2012).

    Article  PubMed  Google Scholar 

  63. Sun, S. et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc. Natl. Acad. Sci. USA 112, E6993–E7002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Viader, A. et al. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. eLife 5, e12345 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumar, D., Yadav, A.K., Jia, X., Mulvenna, J. & Dash, D. Integrated transcriptomic-proteomic analysis using a proteogenomic workflow refines rat genome annotation. Mol. Cell. Proteomics 15, 329–339 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M Ransohoff.

Ethics declarations

Competing interests

R.M.R. is an employee of Biogen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ransohoff, R. A polarizing question: do M1 and M2 microglia exist?. Nat Neurosci 19, 987–991 (2016). https://doi.org/10.1038/nn.4338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing