Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity

Abstract

Neuronal mechanisms underlying alcohol intoxication are unclear. We find that alcohol impairs motor coordination by enhancing tonic inhibition mediated by a specific subtype of extrasynaptic GABAA receptor (GABAR), α6β3δ, expressed exclusively in cerebellar granule cells. In recombinant studies, we characterize a naturally occurring single-nucleotide polymorphism that causes a single amino acid change (R100Q) in α6 (encoded in rats by the Gabra6 gene). We show that this change selectively increases alcohol sensitivity of α6β3δ GABARs. Behavioral and electrophysiological comparisons of Gabra6100R/100R and Gabra6100Q/100Q rats strongly suggest that alcohol impairs motor coordination by enhancing granule cell tonic inhibition. These findings identify extrasynaptic GABARs as critical targets underlying low-dose alcohol intoxication and demonstrate that subtle changes in tonic inhibition in one class of neurons can alter behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The α6-R100Q polymorphism leads to a marked increase in ethanol sensitivity when expressed with β3 and δ subunits.
Figure 2: A single-nucleotide polymorphism (a guanine-to-adenine substitution) in the gene encoding the rat GABAA receptor α6 subunit (Gabra6) is common in Sprague-Dawley rats obtained from Charles River Laboratories.
Figure 3: Ethanol enhances granule cell tonic GABA current, and the enhancement is larger in Gabra6100Q/100Q rats.
Figure 4: Tonic GABA current in granule cells is enhanced by low concentrations of ethanol in Gabra6100R/100R and Gabra6100Q/100Q rats.
Figure 5: Rats homozygous for the α6-100Q polymorphism show increased alcohol-induced motor impairment as compared with Gabra6100R/100R rats.

Similar content being viewed by others

References

  1. Vallee, B.L. Alcohol in the western world. Sci. Am. 278, 80–85 (1998).

    Article  CAS  Google Scholar 

  2. Davies, A.G. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).

    Article  CAS  Google Scholar 

  3. Kobayashi, T. et al. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat. Neurosci. 2, 1091–1097 (1999).

    Article  CAS  Google Scholar 

  4. Lewohl, J.M. et al. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci. 2, 1084–1090 (1999).

    Article  CAS  Google Scholar 

  5. Hodge, C.W. et al. Supersensitivity to allosteric GABAA receptor modulators and alcohol in mice lacking PKCε. Nat. Neurosci. 2, 997–1002 (1999).

    Article  CAS  Google Scholar 

  6. Lovinger, D.M., White, G. & Weight, F.F. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243, 1721–1724 (1989).

    Article  CAS  Google Scholar 

  7. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  Google Scholar 

  8. Suzdak, P.D. et al. A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234, 1243–1247 (1986).

    Article  CAS  Google Scholar 

  9. Sundstrom-Poromaa, I. et al. Hormonally regulated α4β2δ GABAA receptors are a target for alcohol. Nat. Neurosci. 5, 721–722 (2002).

    Article  CAS  Google Scholar 

  10. Wallner, M., Hanchar, H.J. & Olsen, R.W. Ethanol enhances α4β3δ and α6β3δ GABAA receptors at low concentrations known to affect humans. Proc. Natl. Acad. Sci. USA 100, 15218–15223 (2003).

    Article  CAS  Google Scholar 

  11. Choi, D.S. et al. The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Nat. Neurosci. 7, 855–861 (2004).

    Article  CAS  Google Scholar 

  12. Macdonald, R.L. & Olsen, R.W. GABAA receptor channels. Annu. Rev. Neurosci. 17, 569–602 (1994).

    Article  CAS  Google Scholar 

  13. Mohler, H., Crestani, F. & Rudolph, U. GABAA-receptor subtypes: a new pharmacology. Curr. Opin. Pharmacol. 1, 22–25 (2001).

    Article  CAS  Google Scholar 

  14. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W. & Sperk, G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815–850 (2000).

    Article  CAS  Google Scholar 

  15. Peng, Z. et al. GABAA receptor changes in δ subunit-deficient mice: altered expression of α4 and γ2 subunits in the forebrain. J. Comp. Neurol. 446, 179–197 (2002).

    Article  CAS  Google Scholar 

  16. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  Google Scholar 

  17. Campos, M.L., de Cabo, C., Wisden, W., Juiz, J.M. & Merlo, D. Expression of GABAA receptor subunits in rat brainstem auditory pathways: cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus. Neuroscience 102, 625–638 (2001).

    Article  CAS  Google Scholar 

  18. Saxena, N.C. & Macdonald, R.L. Properties of putative cerebellar GABAA receptor isoforms. Mol. Pharmacol. 49, 567–579 (1996).

    CAS  PubMed  Google Scholar 

  19. Nusser, Z. et al. Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the α6 subunit gene. Eur. J. Neurosci. 11, 1685–1697 (1999).

    Article  CAS  Google Scholar 

  20. Brickley, S.G., Revilla, V., Cull-Candy, S.G., Wisden, W. & Farrant, M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409, 88–92 (2001).

    Article  CAS  Google Scholar 

  21. Stell, B.M., Brickley, S.G., Tang, C.Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl. Acad. Sci. USA 100, 14439–14444 (2003).

    Article  CAS  Google Scholar 

  22. Rossi, D.J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    Article  CAS  Google Scholar 

  23. Chadderton, P., Margrie, T.W. & Hausser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    Article  CAS  Google Scholar 

  24. Korpi, E.R., Kleingoor, C., Kettenmann, H. & Seeburg, P.H. Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature 361, 356–359 (1993).

    Article  CAS  Google Scholar 

  25. Saba, L. et al. The R100Q mutation of the GABAA α6 receptor subunit may contribute to voluntary aversion to ethanol in the sNP rat line. Brain Res. Mol. Brain Res. 87, 263–270 (2001).

    Article  CAS  Google Scholar 

  26. Farrant, M. & Cull-Candy, S. GABA receptors, granule cells and genes. Nature 361, 302–303 (1993).

    Article  CAS  Google Scholar 

  27. Radcliffe, R.A. et al. Behavioral characterization of alcohol-tolerant and alcohol-nontolerant rat lines and an f(2) generation. Behav. Genet. 34, 453–463 (2004).

    Article  Google Scholar 

  28. Wisden, W., Korpi, E.R. & Bahn, S. The cerebellum: a model system for studying GABAA receptor diversity. Neuropharmacology 35, 1139–1160 (1996).

    Article  CAS  Google Scholar 

  29. Poltl, A., Hauer, B., Fuchs, K., Tretter, V. & Sieghart, W. Subunit composition and quantitative importance of GABAA receptor subtypes in the cerebellum of mouse and rat. J. Neurochem. 87, 1444–1455 (2003).

    Article  Google Scholar 

  30. Carta, M., Mameli, M. & Valenzuela, C.F. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J. Neurosci. 24, 3746–3751 (2004).

    Article  CAS  Google Scholar 

  31. Kaneda, M., Farrant, M. & Cull-Candy, S.G. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J. Physiol. (Lond.) 485, 419–435 (1995).

    Article  CAS  Google Scholar 

  32. Overstreet, L.S. & Westbrook, G.L. Paradoxical reduction of synaptic inhibition by vigabatrin. J. Neurophysiol. 86, 596–603 (2001).

    Article  CAS  Google Scholar 

  33. Nusser, Z. & Mody, I. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J. Neurophysiol. 87, 2624–2628 (2002).

    Article  CAS  Google Scholar 

  34. Semyanov, A., Walker, M.C., Kullmann, D.M. & Silver, R.A. Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004).

    Article  CAS  Google Scholar 

  35. Semyanov, A., Walker, M.C. & Kullmann, D.M. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat. Neurosci. 6, 484–490 (2003).

    Article  CAS  Google Scholar 

  36. Jones, A. et al. Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits δ subunit expression. J. Neurosci. 17, 1350–1362 (1997).

    Article  CAS  Google Scholar 

  37. Mitchell, S.J. & Silver, R.A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    Article  CAS  Google Scholar 

  38. Korpi, E.R. et al. Cerebellar GABAA receptors in two rat lines selected for high and low sensitivity to moderate alcohol doses: pharmacological and genetic studies. Alcohol 9, 225–231 (1992).

    Article  CAS  Google Scholar 

  39. Vekovischeva, O.Y., Haapalinna, A., Sarviharju, M., Honkanen, A. & Korpi, E.R. Cerebellar GABAA receptors and anxiolytic action of diazepam. Brain Res. Mol. Brain Res. 837, 184–187 (1999).

    CAS  Google Scholar 

  40. Korpi, E.R. et al. Cerebellar granule-cell-specific GABAA receptors attenuate benzodiazepine-induced ataxia: evidence from α6-subunit-deficient mice. Eur. J. Neurosci. 11, 233–240 (1999).

    Article  CAS  Google Scholar 

  41. Homanics, G.E. et al. Mice devoid of GABAA receptor β3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl. Acad. Sci. USA 94, 4143–4148 (1997).

    Article  CAS  Google Scholar 

  42. Homanics, G.E. et al. Gene knockout of the α6 subunit of the GABAA receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol. Pharmacol. 51, 588–596 (1997).

    Article  CAS  Google Scholar 

  43. Uusi-Oukari, M. et al. Long-range interactions in neuronal gene expression: evidence from gene targeting in the GABAA receptor β2-α6-α1-γ2 subunit gene cluster. Mol. Cell. Neurosci. 16, 34–41 (2000).

    Article  CAS  Google Scholar 

  44. Rudolph, U. et al. Benzodiazepine actions mediated by specific GABAA receptor subtypes. Nature 401, 796–800 (1999).

    Article  CAS  Google Scholar 

  45. McKernan, R.M. et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat. Neurosci. 3, 587–592 (2000).

    Article  CAS  Google Scholar 

  46. Low, K. et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131–134 (2000).

    Article  CAS  Google Scholar 

  47. Jurd, R. et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. FASEB J. 17, 250–252 (2003).

    Article  CAS  Google Scholar 

  48. Wei, W., Faria, L.C. & Mody, I. Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J. Neurosci. 24, 8379–8382 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Gundersen and the UCLA Anesthesiology Department for providing X. laevis oocytes, A. Taylor and D. Tio for help with blood alcohol analysis, and K. Olofsdotter-Otis for helpful comments on the manuscript. The work was supported by a Human Frontiers Science Program Long Term Fellowship to P.D.D. and by US National Institutes of Health grants AA015460 to H.J.H, NS41651 to T.S.O., and NS35985 and AA07680 to R.W.O.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas S Otis or Martin Wallner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanchar, H., Dodson, P., Olsen, R. et al. Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nat Neurosci 8, 339–345 (2005). https://doi.org/10.1038/nn1398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing