Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization

Abstract

Neurotransmitter transporters are critical for synaptic neurotransmitter inactivation. Transporter inhibitors markedly increase the duration and magnitude of synaptic transmission, underscoring the importance of transporter activity in neurotransmission. Recent studies indicate that membrane trafficking dynamically governs neuronal transporter cell-surface presentation in a protein kinase C–regulated manner, suggesting that transporter trafficking profoundly affects synaptic signaling. However, the molecular architecture coupling neurotransmitter transporters to the endocytic machinery is not defined. Here, we identify nonclassical, distinct endocytic signals in the dopamine transporter (DAT) that are necessary and sufficient to drive constitutive and protein kinase C–regulated DAT internalization. The DAT internalization signal is conserved across SLC6 neurotransmitter carriers and is functional in the homologous norepinephrine transporter, suggesting that this region is likely to be the endocytic signal for all SLC6 neurotransmitter transporters. The DAT endocytic signal does not conform to classic internalization motifs, suggesting that SLC6 neurotransmitter transporters may have evolved unique endocytic mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DAT N terminus does not contain an autonomous endocytic signal.
Figure 2: DAT C-terminal residues 587–596 are sufficient to drive Tac endocytosis.
Figure 3: DAT Ile595 within the FREKLAYAIA sequence is necessary for Tac-DAT endocytosis.
Figure 4: Nonpolar residues within the FREKLAYAIA sequence are necessary for constitutive DAT internalization as shown by DAT internalization assay.
Figure 5: The FREKLAYAIA region is conserved in SLC6 neurotransmitter transporters and is both necessary and sufficient for NET endocytosis.
Figure 6: Nonpolar residues within the FREKLAYAIA sequence are not required for PKC-stimulated DAT downregulation and internalization.
Figure 7: The DAT C terminus contains a PKC-sensitive endocytic signal.
Figure 8: DAT C-terminal residues 587–596 are sufficient and necessary to drive endocytosis in dopaminergic cells.

Similar content being viewed by others

References

  1. Chen, N.H., Reith, M.E. & Quick, M.W. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 447, 519–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Torres, G.E., Gainetdinov, R.R. & Caron, M.G. Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci. 4, 13–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Rothman, R.B. & Baumann, M.H. Monoamine transporters and psychostimulant drugs. Eur. J. Pharmacol. 479, 23–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Schenk, J.O. The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate. Prog. Drug Res. 59, 111–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Gulley, J.M. & Zahniser, N.R. Rapid regulation of dopamine transporter function by substrates blockers and presynaptic receptor ligands. Eur. J. Pharmacol. 479, 139–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Amara, S.G. & Sonders, M.S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 51, 87–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Jones, S.R. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. USA 95, 4029–4034 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhuang, X. et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc. Natl. Acad. Sci. USA 98, 1982–1987 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melikian, H.E. Neurotransmitter transporter trafficking: endocytosis, recycling and regulation. Pharmacol. Ther. 104, 17–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Zahniser, N.R. & Doolen, S. Chronic and acute regulation of Na+/Cl–dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol. Ther. 92, 21–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Robinson, M.B. Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J. Neurochem. 80, 1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Daniels, G.M. & Amara, S.G. Regulated trafficking of the human dopamine transporter. Clathrin- mediated internalization and lysosomal degradation in response to phorbol esters. J. Biol. Chem. 274, 35794–35801 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Melikian, H.E. & Buckley, K.M. Membrane trafficking regulates the activity of the human dopamine transporter. J. Neurosci. 19, 7699–7710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, L.B. et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem. (2004).

  15. Loder, M.K. & Melikian, H.E. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J. Biol. Chem. 278, 22168–22174 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Deken, S.L., Wang, D. & Quick, M.W. Plasma membrane GABA transporters reside on distinct vesicles and undergo rapid regulated recycling. J. Neurosci. 23, 1563–1568 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitworth, T.L. & Quick, M.W. Substrate-induced regulation of γ-aminobutyric acid transporter trafficking requires tyrosine phosphorylation. J. Biol. Chem. 276, 42932–42937 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Whitworth, T.L., Herndon, L.C. & Quick, M.W. Psychostimulants differentially regulate serotonin transporter expression in thalamocortical neurons. J. Neurosci. 22, RC192 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu, C.B., Hewlett, W.A., Feoktistov, I., Biaggioni, I. & Blakely, R.D. Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol. Pharmacol. 65, 1462–1474 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Law, R.M., Stafford, A. & Quick, M.W. Functional regulation of γ-aminobutyric acid transporters by direct tyrosine phosphorylation. J. Biol. Chem. 275, 23986–23991 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Quick, M.W., Hu, J., Wang, D. & Zhang, H.Y. Regulation of a γ-aminobutyric acid transporter by reciprocal tyrosine and serine phosphorylation. J. Biol. Chem. 279, 15961–15967 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Dell'Angelica, E.C. Clathrin-binding proteins: got a motif? Join the network!. Trends Cell Biol. 11, 315–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Subtil, A., Lampson, M.A., Keller, S.R. & McGraw, T.E. Characterization of the insulin-regulated endocytic recycling mechanism in 3t3-l1 adipocytes using a novel reporter molecule. J. Biol. Chem. 275, 4787–4795 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, A.O., Lampson, M.A. & McGraw, T.E.A. Di-leucine sequence and a cluster of acidic amino acids are required for dynamic retention in the endosomal recycling compartment of fibroblasts. Mol. Biol. Cell 12, 367–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, P.K., Waites, C., Liu, Y., Krantz, D.E. & Edwards, R.H.A. Leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters. J. Biol. Chem. 273, 17351–17360 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Aguilar, R.C. et al. Signal-binding specificity of the μ4 subunit of the adaptor protein complex AP-4. J. Biol. Chem. 276, 13145–13152 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Madsen, K.L. et al. Molecular determinants for the complex binding specificity of the PDZ domain in PICK 1. J. Biol. Chem., published online 17 March 2005 (10.1074/jbc.M500577200).

  29. Bjerggaard, C. et al. Surface targeting of the dopamine transporter involves discrete epitopes in the distal C terminus but does not require canonical PDZ domain interactions. J. Neurosci. 24, 7024–7036 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Torres, G.E. et al. Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30, 121–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Loland, C.J., Norregaard, L., Litman, T. & Gether, U. Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc. Natl. Acad. Sci. USA 99, 1683–1688 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saunders, C. et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc. Natl. Acad. Sci. USA 97, 6850–6855 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moron, J.A. et al. Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J. Neurosci. 23, 8480–8488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jayanthi, L.D., Samuvel, D.J. & Ramamoorthy, S. Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters: evidence for localization in lipid rafts and lipid raft-mediated internalization. J. Biol. Chem. 279, 19315–19326 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Farhan, H. et al. Two discontinuous segments in the carboxy terminus are required for membrane targeting of the rat GABA transporter-1 (GAT1). J. Biol. Chem. 279, 28553–28563 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ginty, D.D. & Segal, R.A. Retrograde neurotrophin signaling: Trk-ing along the axon. Curr. Opin. Neurobiol. 12, 268–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Ali, S.A. & Steinkasserer, A. PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques 18, 746–750 (1995).

    CAS  PubMed  Google Scholar 

  41. Johnson, A.O. et al. Transferrin receptor containing the SDYQRL motif of TGN38 causes a reorganization of the recycling compartment but is not targeted to the TGN. J. Cell Biol. 135, 1749–1762 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. La Rosa, F.G. et al. Inhibition of proliferation and expression of T-antigen in SV40 large T-antigen gene-induced immortalized cells following transplantations. Cancer Lett. 113, 55–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Mena, M.A., Davila, V. & Sulzer, D. Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures. J. Neurochem. 69, 1398–1408 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Stevens for excellent technical assistance and D. LaPointe for bioinformatics support. We are grateful to V. Budnik, P. Gardner and D. Lambright for critical manuscript review and helpful discussions. This work was supported by National Institute on Drug Abuse award 15169 to H.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haley E Melikian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holton, K., Loder, M. & Melikian, H. Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat Neurosci 8, 881–888 (2005). https://doi.org/10.1038/nn1478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing