Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion

Abstract

Parkinson disease is a neurodegenerative disorder whose symptoms are caused by the loss of dopaminergic neurons innervating the striatum. As striatal dopamine levels fall, striatal acetylcholine release rises, exacerbating motor symptoms. This adaptation is commonly attributed to the loss of interneuronal regulation by inhibitory D2 dopamine receptors. Our results point to a completely different, new mechanism. After striatal dopamine depletion, D2 dopamine receptor modulation of calcium (Ca2+) channels controlling vesicular acetylcholine release in interneurons was unchanged, but M4 muscarinic autoreceptor coupling to these same channels was markedly attenuated. This adaptation was attributable to the upregulation of RGS4—an autoreceptor-associated, GTPase-accelerating protein. This specific signaling adaptation extended to a broader loss of autoreceptor control of interneuron spiking. These observations suggest that RGS4-dependent attenuation of interneuronal autoreceptor signaling is a major factor in the elevation of striatal acetylcholine release in Parkinson disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopamine depletion downregulates the M4 modulation of Ca2+ channels in striatal cholinergic interneurons.
Figure 2: RGS4 mRNAs are upregulated in striatal cholinergic interneurons after dopamine depletion.
Figure 3: Gαo2 mediates the M4 modulation of Ca2+ channels in striatal cholinergic interneurons.
Figure 4: RGS4 protein attenuates M4 receptor modulation of Ca2+ channel currents in striatal cholinergic interneurons.
Figure 5: RGS4 protein shifts the Oxo-M dose response curve.
Figure 6: RGS4 mimics the effect of dopamine depletion.
Figure 7: Cav2.2, SK channel block and muscarinic receptor activation induce similar irregular firing patterns in striatal cholinergic interneurons.
Figure 8: M4 regulation of the spontaneous firing pattern of cholinergic interneurons is attenuated following dopamine depletion.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Freund, T.F. et al. Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J. Neurosci. 5, 603–616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nastuk, M.A. & Graybiel, A.M. Patterns of muscarinic cholinergic binding in the striatum and their relation to dopamine islands and striosomes. J. Comp. Neurol. 237, 176–194 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Barbeau, A. The pathogenesis of Parkinson's disease: a new hypothesis. Can. Med. Assoc. J. 87, 802–807 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wooten, G. Parkinsonism. in Neurobiology of Disease (eds. Pearlman, A.L. & Collins, R.C.) Ch. 23, 454–468 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  6. MacKenzie, R.G., Stachowiak, M.K. & Zigmond, M.J. Dopaminergic inhibition of striatal acetylcholine release after 6-hydroxydopamine. Eur. J. Pharmacol. 168, 43–52 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. DeBoer, P., Heeringa, M.J. & Abercrombie, E.D. Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. Eur. J. Pharmacol. 317, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Yan, Z., Song, W.J. & Surmeier, J. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J. Neurophysiol. 77, 1003–1015 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Maurice, N. et al. D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J. Neurosci. 24, 10289–10301 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wichmann, T., Wictorin, K., Bjorklund, A. & Starke, K. Release of acetylcholine and its dopaminergic control in slices from striatal grafts in the ibotenic acid-lesioned rat striatum. Naunyn Schmiedebergs Arch. Pharmacol. 338, 623–631 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Aosaki, T., Graybiel, A.M. & Kimura, M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 265, 412–415 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Raz, A., Feingold, A., Zelanskaya, V., Vaadia, E. & Bergman, H. Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J. Neurophysiol. 76, 2083–2088 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Calabresi, P. et al. Muscarinic IPSPs in rat striatal cholinergic interneurones. J. Physiol. (Lond.) 510, 421–427 (1998).

    Article  CAS  Google Scholar 

  14. Yan, Z. & Surmeier, D.J. Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J. Neurosci. 16, 2592–2604 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, W. et al. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J. Neurosci. 22, 1709–1717 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Vries, L., Zheng, B., Fischer, T., Elenko, E. & Farquhar, M.G. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ni, Y.G. et al. Region-specific regulation of RGS4 (regulator of G-protein-signaling protein type 4) in brain by stress and glucocorticoids: in vivo and in vitro studies. J. Neurosci. 19, 3674–3680 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geurts, M., Hermans, E. & Maloteaux, J.M. Opposite modulation of regulators of G protein signalling-2 RGS2 and RGS4 expression by dopamine receptors in the rat striatum. Neurosci. Lett. 333, 146–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Geurts, M., Maloteaux, J.M. & Hermans, E. Altered expression of regulators of G-protein signaling (RGS) mRNAs in the striatum of rats undergoing dopamine depletion. Biochem. Pharmacol. 66, 1163–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Rahman, Z. et al. RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38, 941–952 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, X.T., Wachtel, S.R., Galloway, M.P. & White, F.J. Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. J. Neurosci. 10, 2318–2329 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mileson, B.E., Lewis, M.H. & Mailman, R.B. Dopamine receptor 'supersensitivity' occurring without receptor up-regulation. Brain Res. 561, 1–10 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi, Y., Wilson, C.J., Augood, S.J. & Emson, P.C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Cooper, J.R., Bloom, F.E. & Roth, R.H. Biochemical Basis of Neuropharmacology 7th edn. (Oxford University Press, New York, 1996).

    Google Scholar 

  25. Esaki, T. et al. Developmental disruption of serotonin transporter function impairs cerebral responses to whisker stimulation in mice. Proc. Natl. Acad. Sci. USA 102, 5582–5587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joyce, J.N. Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. II. Effects of 6-hydroxydopamine or colchicine microinjections into the VTA or reserpine treatment. Exp. Neurol. 113, 277–290 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Ueda, H. et al. Supersensitization of neurochemical responses by L-DOPA and dopamine receptor agonists in the striatum of experimental Parkinson's disease model rats. Biomed. Pharmacother. 49, 169–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Cabrera-Vera, T.M. et al. RGS9–2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proc. Natl. Acad. Sci. USA 101, 16339–16344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conklin, B.R. & Bourne, H.R. Structural elements of G alpha subunits that interact with G beta gamma, receptors, and effectors. Cell 73, 631–641 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Martin, E.L., Rens-Domiano, S., Schatz, P.J. & Hamm, H.E. Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem. 271, 361–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Hamm, H.E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science 241, 832–835 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Rasenick, M.M., Watanabe, M., Lazarevic, M.B., Hatta, S. & Hamm, H.E. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J. Biol. Chem. 269, 21519–21525 (1994).

    CAS  PubMed  Google Scholar 

  33. Zeng, W. et al. The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. 273, 34687–34690 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Golard, A. & Siegelbaum, S.A. Kinetic basis for the voltage-dependent inhibition of N-type calcium current by somatostatin and norepinephrine in chick sympathetic neurons. J. Neurosci. 13, 3884–3894 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zamponi, G.W. & Snutch, T.P. Decay of prepulse facilitation of N type calcium channels during G protein inhibition is consistent with binding of a single Gbeta subunit. Proc. Natl. Acad. Sci. USA 95, 4035–4039 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bennett, B.D., Callaway, J.C. & Wilson, C.J. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci. 20, 8493–8503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pepperl, D.J., Shah-Basu, S., VanLeeuwen, D., Granneman, J.G. & MacKenzie, R.G. Regulation of RGS mRNAs by cAMP in PC12 cells. Biochem. Biophys. Res. Commun. 243, 52–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Inanobe, A. et al. Interaction between the RGS domain of RGS4 with G protein alpha subunits mediates the voltage-dependent relaxation of the G protein-gated potassium channel. J. Physiol. (Lond.) 535, 133–143 (2001).

    Article  CAS  Google Scholar 

  39. Siderovski, D.P. & Willard, F.S. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int. J. Biol. Sci. 1, 51–66 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bernstein, L.S. et al. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signaling. J. Biol. Chem. 279, 21248–21256 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, X. et al. RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Goldberg, J.A. & Wilson, C.J. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium activated potassium currents in striatal cholinergic interneurons. J. Neurosci. 25, 10230–10238 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reid, C.A., Bekkers, J.M. & Clements, J.D. Presynaptic Ca2+ channels: a functional patchwork. Trends Neurosci. 26, 683–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Dolezal, V. & Wecker, L. Muscarinic receptor blockade increases basal acetylcholine release from striatal slices. J. Pharmacol. Exp. Ther. 252, 739–743 (1990).

    CAS  PubMed  Google Scholar 

  45. Graybiel, A.M., Aosaki, T., Flaherty, A.W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. LaHoste, G.J., Yu, J. & Marshall, J.F. Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc. Natl. Acad. Sci. USA 90, 7451–7455 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tkatch, T., Baranauskas, G. & Surmeier, D.J. Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. J. Neurosci. 20, 579–588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Skiba, N.P., Bae, H. & Hamm, H.E. Mapping of effector binding sites of transducin alpha-subunit using G alpha t/G alpha i1 chimeras. J. Biol. Chem. 271, 413–424 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Berman, D.M., Kozasa, T. & Gilman, A.G. The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J. Biol. Chem. 271, 27209–27212 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Chen, Q. Ruan, K. Saporito, C. McCoy and S. Ulrich for technical assistance, and C.S. Chan and W. Shen for discussions. Supported by NS 34696 (D.J.S.), the Picower Foundation (D.J.S.), NS 37760 (C.J.W.), F32 NS 050900 (J.A.G.), MH45156 (P.L.), HD15052 (P.L.), the McKnight Foundation (P.L.), National Alliance for Research in Schizophrenia and Depression (P.J.E.) and MH065215 (P.J.E.).

Author information

Authors and Affiliations

Authors

Contributions

J.D. did most of the voltage-clamp and scRT-PCR experiments; he also participated in the writing of the manuscript and in the preparation of the figures. J.N.G. did the slice experiment examining the muscarinic modulation of interneuron spiking. T.T. designed all the primers and did the real-time RT-PCR experiment. J.A.G. and C.J.W. did the slice recording experiments examining the sensitivity of pacemaking to Ca2+ channel and SK channel block. S.C. and H.E.H. provided all the RGS proteins and peptides and did the GTPase activity assay. P.J.E. and P.L. generated the RGS4 OE mice. D.J.S. directed the project, prepared the figures and was responsible for the final manuscript.

Corresponding author

Correspondence to D James Surmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

RGS4 and 9 are different regulated in mice striatum tissues following domapine depletion by reserpine treatment. (PDF 334 kb)

Supplementary Fig. 2

Two dopamine depletion models produce same effect on M4 modulation of calcium channels. (PDF 1076 kb)

Supplementary Fig. 3 (PDF 5101 kb)

Supplementary Fig. 4 (PDF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Guzman, J., Tkatch, T. et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9, 832–842 (2006). https://doi.org/10.1038/nn1700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing