Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus

Abstract

Serotonin receptor 1A knockout (Htr1aKO) mice show increased anxiety-related behavior in tests measuring innate avoidance. Here we demonstrate that Htr1aKO mice show enhanced fear conditioning to ambiguous conditioned stimuli, a hallmark of human anxiety. To examine the involvement of specific forebrain circuits in this phenotype, we developed a pharmacogenetic technique for the rapid tissue- and cell type–specific silencing of neural activity in vivo. Inhibition of neurons in the central nucleus of the amygdala suppressed conditioned responses to both ambiguous and nonambiguous cues. In contrast, inhibition of hippocampal dentate gyrus granule cells selectively suppressed conditioned responses to ambiguous cues and reversed the knockout phenotype. These data demonstrate that Htr1aKO mice have a bias in the processing of threatening cues that is moderated by hippocampal mossy-fiber circuits, and suggest that the hippocampus is important in the response to ambiguous aversive stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased response to partially conditioned cues in Htr1aKO mice.
Figure 2: Transgenic lines expressing Htr1a in the CeA and DG.
Figure 3: Electrophysiological characterization of Htr1aCeA line.
Figure 4: Electrophysiological characterization of Htr1aDG line.
Figure 5: Suppression of conditioned responses by inhibition of neurons in the CeA and DG.

Similar content being viewed by others

References

  1. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).

    Article  CAS  Google Scholar 

  2. Heisler, L.K. et al. Elevated anxiety and antidepressant-like responses in serotonin 5–HT1A receptor mutant mice. Proc. Natl. Acad. Sci. USA 95, 15049–15054 (1998).

    Article  CAS  Google Scholar 

  3. Parks, C.L., Robinson, P.S., Sibille, E., Shenk, T. & Toth, M. Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl. Acad. Sci. USA 95, 10734–10739 (1998).

    Article  CAS  Google Scholar 

  4. Ramboz, S. et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA 95, 14476–14481 (1998).

    Article  CAS  Google Scholar 

  5. Groenink, L. et al. 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur. J. Pharmacol. 463, 185–197 (2003).

    Article  CAS  Google Scholar 

  6. Klemenhagen, K.C., Gordon, J.A., David, D.J., Hen, R. & Gross, C.T. Increased fear response to contextual cues in mice lacking the 5-HT1A receptor. Neuropsychopharmacology 31, 101–111 (2006).

    Article  CAS  Google Scholar 

  7. Chalmers, D.T. & Watson, S.J. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res. 561, 51–60 (1991).

    Article  CAS  Google Scholar 

  8. Kia, H.K. et al. Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J. Comp. Neurol. 365, 289–305 (1996).

    Article  CAS  Google Scholar 

  9. Luscher, C., Jan, L.Y., Stoffel, M., Malenka, R.C. & Nicoll, R.A. G protein–coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic, but not presynaptic, transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    Article  CAS  Google Scholar 

  10. Sibille, E., Pavlides, C., Benke, D. & Toth, M. Genetic inactivation of the serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor α subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci. 20, 2758–2765 (2000).

    Article  CAS  Google Scholar 

  11. Bannerman, D.M. et al. Regional dissociations within the hippocampus—memory and anxiety. Neurosci. Biobehav. Rev. 28, 273–283 (2004).

    Article  CAS  Google Scholar 

  12. Kjelstrup, K.G. et al. Reduced fear expression after lesions of the ventral hippocampus. Proc. Natl. Acad. Sci. USA 99, 10825–10830 (2002).

    Article  CAS  Google Scholar 

  13. Best, M.R. & Best, P.J. The effects of state of consciousness and latent inhibition on hippocampal unit activity in the rat during conditioning. Exp. Neurol. 51, 564–573 (1976).

    Article  CAS  Google Scholar 

  14. Delgado-Garcia, J.M. & Gruart, A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 29, 330–338 (2006).

    Article  CAS  Google Scholar 

  15. Munera, A., Gruart, A., Munoz, M.D., Fernandez-Mas, R. & Delgado-Garcia, J.M. Hippocampal pyramidal cell activity encodes conditioned stimulus predictive value during classical conditioning in alert cats. J. Neurophysiol. 86, 2571–2582 (2001).

    Article  CAS  Google Scholar 

  16. Pokorny, J. & Yamamoto, T. Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons. Brain Res. Bull. 7, 113–120 (1981).

    Article  CAS  Google Scholar 

  17. Okuhara, D.Y. & Beck, S.G. 5-HT1A receptor linked to inward-rectifying potassium current in hippocampal CA3 pyramidal cells. J. Neurophysiol. 71, 2161–2167 (1994).

    Article  CAS  Google Scholar 

  18. Tan, E.M. et al. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51, 157–170 (2006).

    Article  CAS  Google Scholar 

  19. Haddjeri, N., Blier, P. & de Montigny, C. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J. Neurosci. 18, 10150–10156 (1998).

    Article  CAS  Google Scholar 

  20. Davis, M. & Whalen, P.J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  Google Scholar 

  21. Wilensky, A.E., Schafe, G.E., Kristensen, M.P. & LeDoux, J.E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation and expression of pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    Article  CAS  Google Scholar 

  22. Greiner, E.F. et al. Differential ligand-dependent protein-protein interactions between nuclear receptors and a neuronal-specific cofactor. Proc. Natl. Acad. Sci. USA 97, 7160–7165 (2000).

    Article  CAS  Google Scholar 

  23. Beck, A.T. & Clark, D.A. Anxiety and depression: an information processing perspective. Anxiety Research 1, 23–36 (1988).

    Article  Google Scholar 

  24. Hazlett-Stevens, H. & Borkovec, T.D. Interpretive cues and ambiguity in generalized anxiety disorder. Behav. Res. Ther. 42, 881–892 (2004).

    Article  Google Scholar 

  25. Mathews, A., Mogg, K., May, J. & Eysenck, M. Implicit and explicit memory bias in anxiety. J. Abnorm. Psychol. 98, 236–240 (1989).

    Article  CAS  Google Scholar 

  26. Gorman, J.M. Comorbid depression and anxiety spectrum disorders. Depress. Anxiety 4, 160–168 (1996).

    Article  Google Scholar 

  27. Hettema, J.M., Neale, M.C. & Kendler, K.S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry 158, 1568–1578 (2001).

    Article  CAS  Google Scholar 

  28. Pare, D., Quirk, G.J. & Ledoux, J.E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  Google Scholar 

  29. Lopez de Armentia, M. & Sah, P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J. Neurophysiol. 92, 1285–1294 (2004).

    Article  Google Scholar 

  30. Schiess, M.C., Callahan, P.M. & Zheng, H. Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro. J. Neurosci. Res. 58, 663–673 (1999).

    Article  CAS  Google Scholar 

  31. Cassell, M.D., Gray, T.S. & Kiss, J.Z. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological and immunocytochemical study. J. Comp. Neurol. 246, 478–499 (1986).

    Article  CAS  Google Scholar 

  32. Veinante, P., Stoeckel, M.E. & Freund-Mercier, M.J. GABA- and peptide-immunoreactivities colocalize in the rat central extended amygdala. Neuroreport 8, 2985–2989 (1997).

    Article  CAS  Google Scholar 

  33. Chowdhury, N., Quinn, J.J. & Fanselow, M.S. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav. Neurosci. 119, 1396–1402 (2005).

    Article  Google Scholar 

  34. Quinn, J.J., Oommen, S.S., Morrison, G.E. & Fanselow, M.S. Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace and delay fear conditioning in a temporally specific manner. Hippocampus 12, 495–504 (2002).

    Article  Google Scholar 

  35. Crestani, F. et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2, 833–839 (1999).

    Article  CAS  Google Scholar 

  36. Holland, P.C. Brain mechanisms for changes in processing of conditional stimuli in Pavlovian conditioning: implications for behavior theory. Anim. Learn. Behav. 25, 373–399 (1997).

    Article  Google Scholar 

  37. Han, J.S., Gallagher, M. & Holland, P. Hippocampal lesions disrupt decrements, but not increments, in conditioned stimulus processing. J. Neurosci. 15, 7323–7329 (1995).

    Article  CAS  Google Scholar 

  38. Jarsky, T., Roxin, A., Kath, W.L. & Spruston, N. Conditional dendritic-spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676 (2005).

    Article  CAS  Google Scholar 

  39. McNaughton, N. Cognitive dysfunction resulting from hippocampal hyperactivity—a possible cause of anxiety disorder? Pharmacol. Biochem. Behav. 56, 603–611 (1997).

    Article  CAS  Google Scholar 

  40. Papez, J.W. A proposed mechanism of emotion. 1937. J. Neuropsychiatry Clin. Neurosci. 7, 103–112 (1995).

    Article  CAS  Google Scholar 

  41. Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48, 727–735 (2005).

    Article  CAS  Google Scholar 

  42. Kawasaki, F., Hazen, M. & Ordway, R.W. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nat. Neurosci. 3, 859–860 (2000).

    Article  CAS  Google Scholar 

  43. Muyrers, J.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

    Article  CAS  Google Scholar 

  44. Martin, K.F., Phillips, I., Hearson, M., Prow, M.R. & Heal, D.J. Characterization of 8-OH-DPAT–induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br. J. Pharmacol. 107, 15–21 (1992).

    Article  CAS  Google Scholar 

  45. Beck, S.G., Pan, Y.Z., Akanwa, A.C. & Kirby, L.G. Median and dorsal raphe neurons are not electrophysiologically identical. J. Neurophysiol. 91, 994–1005 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Carola, J. Rientjes, T. Ferreira, S. Santanelli, F. Zonfrillo and the members of the EMBL Transgenic Facility for expert help. We are grateful to F. Crestani for helpful suggestions on the ambiguous-cue fear-conditioning protocol, A. Akanwa for doing the immunohistochemistry on brain slices, and K. Ploessl and H. Kung for the gift of 125I-MPPI. This work was supported by a National Alliance for Research on Schizophrenia and Depression Young Investigator Award (C.G.), a grant from the Fritz Thyssen Stiftung (C.G.), funds from the EMBL Ph.D. Programme (T.T. and L.L.I.), and grants from the US National Institutes of Health MH048125 and MH07540407 (S.G.B.).

Author information

Authors and Affiliations

Authors

Contributions

T.T. designed, executed and analyzed all genetic, histological and behavioral experiments. Electrophysiological experiments were designed, supervised and interpreted by S.G.B. and carried out by X.-H.M. L.L.I. carried out the chronic pharmacological treatment procedure. C.G. conceived of the experiments, oversaw their execution and interpretation and wrote the manuscript with input from T.T. and S.G.B.

Corresponding author

Correspondence to Cornelius Gross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Increased response to partially conditioned cues in Htr1aKO mice persists at lower shock intensity. (PDF 44 kb)

Supplementary Fig. 2

Full rostral-caudal analysis of Htr1a expression in Htr1aCeA and Htr1aDG lines. (PDF 1425 kb)

Supplementary Fig. 3

Quantification of Htr1a expression in Htr1aCeA and Htr1aDG lines. (PDF 41 kb)

Supplementary Table 1

Electrophysiological characteristics of type-I and type-II neurons from the CeA. (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsetsenis, T., Ma, XH., Lo Iacono, L. et al. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nat Neurosci 10, 896–902 (2007). https://doi.org/10.1038/nn1919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing