Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells

Abstract

Analysis of mitochondrial function is central to the study of intracellular energy metabolism, mechanisms of cell death and pathophysiology of a variety of human diseases, including myopathies, neurodegenerative diseases and cancer. However, important properties of mitochondria differ in vivo and in vitro. Here, we describe a protocol for the analysis of functional mitochondria in situ, without the isolation of organelles, in selectively permeabilized cells or muscle fibers using digitonin or saponin. A specially designed substrate/inhibitor titration approach allows the step-by-step analysis of several mitochondrial complexes. This protocol allows the detailed characterization of functional mitochondria in their normal intracellular position and assembly, preserving essential interactions with other organelles. As only a small amount of tissue is required for analysis, the protocol can be used in diagnostic settings in clinical studies. The permeabilization procedure and specific titration analysis can be completed in 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme showing the principle of analysis of mitochondria in situ by selective plasma membrane permeabilization.
Figure 2: Example of a specific substrate inhibitor titration oxygraphic protocol for step-by-step analysis of various segments of the respiratory chain.
Figure 3: Example of isolation of rat m. soleus muscle fibers.
Figure 4
Figure 5
Figure 6: Examples of poor-quality preparations of permeabilized muscle fibers.

Similar content being viewed by others

References

  1. Newmeyer, D.D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Kroemer, G. & Reed, J.C. Mitochondrial control of cell death. Nat. Med. 6, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Wallace, D.C. Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61, 1175–1212 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, M.T. & Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Schapira, A.H. Mitochondrial dysfunction in Parkinson's disease. Cell Death Differ. 14, 1261–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Rötig, A. et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17, 215–217 (1997).

    Article  PubMed  Google Scholar 

  8. Vielhaber, S. et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123, 1339–1348 (2000).

    Article  PubMed  Google Scholar 

  9. Eng, C., Kiuru, M., Fernandez, M.J. & Aaltonen, L.A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer 3, 193–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Balaban, R.S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Saks, V.A. et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol. Cell. Biochem. 184, 81–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Milner, D.J., Mavroidis, M., Weisleder, N. & Capetanaki, Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell. Biol. 150, 1283–1298 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kunz, W.S. et al. Flux control of cytochrome c oxidase in human skeletal muscle. J. Biol. Chem. 275, 27741–27745 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Villani, G., Greco, M., Papa, S. & Attardi, G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J. Biol. Chem. 273, 31829–31836 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Piper, H.M. et al. Development of ischemia-induced damage in defined mitochondrial subpopulations. J. Mol. Cell. Cardiol. 17, 885–896 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Lightowlers, R.N., Chinnery, P.F., Turnbull, D.M. & Howell, N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 13, 450–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Kay, L., Nicolay, K., Wieringa, B., Saks, V. & Wallimann, T. Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. J. Biol. Chem. 275, 6937–6944 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Saks, V.A., Belikova, Y.O. & Kuznetsov, A.V. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim. Biophys. Acta 1074, 302–311 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Kuznetsov, A.V. et al. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers. J. Cell Biol. 140, 1091–1099 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kuznetsov, A.V. et al. Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim. Biophys. Acta 1757, 686–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Chan, D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241–1252 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Vercesi, A.E., Bernardes, C.F., Hoffmann, M.E., Gadelha, F.R. & Docampo, R. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J. Biol. Chem. 266, 14431–14434 (1991).

    CAS  PubMed  Google Scholar 

  24. Veksler, V.I., Kuznetsov, A.V., Sharov, V.G., Kapelko, V.I. & Saks, V.A. Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim. Biophys. Acta 892, 191–196 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Kunz, W.S. et al. Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. Biochim. Biophys. Acta 1144, 46–53 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Letellier, T. et al. Mitochondrial myopathy studies on permeabilized muscle fibers. Pediatr. Res. 32, 17–22 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Kunz, W.S., Kuznetsov, A.V., Clark, J.F., Tracey, I. & Elger, C.E. Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. J. Neurochem. 72, 1580–1585 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kuznetsov, A.V. et al. Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal. Biochem. 305, 186–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Korn, E. Cell membranes: structure and synthesis. Annu. Rev. Biochem. 38, 263–288 (1969).

    Article  CAS  PubMed  Google Scholar 

  30. Comte, J., Maisterrena, B. & Gautheron, D.C . Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria comparison with microsomes. Biochim. Biophys. Acta 419, 271–284 (1976).

    Article  CAS  PubMed  Google Scholar 

  31. Khuchua, Z. et al. Caffeine and Ca2+ stimulate mitochondrial oxidative phosphorylation in saponin-skinned human skeletal muscle fibers due to activation of actomyosin ATPase. Biochim. Biophys. Acta 1188, 373–379 (1994).

    Article  PubMed  Google Scholar 

  32. Kunz, W.S., Kuznetsov, A.V. & Gellerich, F.N. Mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers is stimulated by caffeine. FEBS Lett. 323, 188–190 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Kuznetsov, A.V. et al. Application of inhibitor titrations for the detection of oxidative phosphorylation defects in saponin-skinned muscle fibers of patients with mitochondrial diseases. Biochim. Biophys. Acta 1360, 142–150 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Kuznetsov, A.V., Wiedemann, F.R., Winkler, K. & Kunz, W.S. Use of saponin-permeabilized muscle fibers for the diagnosis of mitochondrial diseases. Biofactors 7, 221–223 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Kuznetsov, A.V. et al. Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am. J. Physiol. 286, H1633–H1641 (2004).

    CAS  Google Scholar 

  36. Altschuld, R.A. et al. Structural and functional properties of adult rat heart myocytes lysed with digitonin. J. Biol. Chem. 260, 14325–14334 (1985).

    CAS  PubMed  Google Scholar 

  37. Dzeja, P.P., Bortolon, R., Perez-Terzic, C., Holmuhamedov, E.L. & Terzic, A. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc. Natl. Acad. Sci. USA 99, 10156–10161 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Youle, R.J. et al. Cellular demolition and the rules. Science 315, 776 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Riedl, S.J. & Salvesen, G.S. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell. Biol. 8, 405–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.Y. & Youle, R.J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Saks, V.A., Belikova, Y.O. & Kuznetsov, A.V. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim. Biophys. Acta 1074, 302–311 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Saks, V.A. et al. Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim. Biophys. Acta 1144, 134–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Kuznetsov, A.V. et al. Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur. J. Biochem. 241, 909–915 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Hoerter, J.A., Kuznetsov, A.V. & Ventura-Clapier, R. Functional development of creatine kinase system in perinatal rabbit heart. Circ. Res. 69, 665–676 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Trumbeckaite, S., Opalka, J.R., Neuhof, C., Zierz, S. & Gellerich, F.N. Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur. J. Biochem. 268, 1422–1429 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kuznetsov, A.V., Clark, J.F., Winkler, K. & Kunz, W.S. Increase of flux control of cytochrome c oxidase in copper-deficient mottled brindled mice. J. Biol. Chem. 271, 283–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Veksler, V.I. et al. Muscle creatine kinase deficient mice: cardiac and skeletal muscle tissue-specificity of adaptation of the mitochondrial function. J. Biol. Chem. 270, 19921–19929 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Rustin, P. et al. Fluxes of nicotinamide adenine dinucleotides through mitochondrial membranes in human cultured cells. J. Biol. Chem. 271, 14785–14790 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Gnaiger, E. et al. Mitochondria in the cold. In Life in the Cold (eds. G. Heldmaier & M. Klingenspor) Springer, Berlin, Heidelberg, New York, 431–442 (2000).

    Chapter  Google Scholar 

  52. Kuznetsov, A.V. et al. Cryopreservation of mitochondria and mitochondrial function in cardiac and skeletal muscle fibers. Anal. Biochem. 319, 296–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ventura-Clapier, R., Garnier, A. & Veksler, V. Energy metabolism in heart failure. J. Physiol. 555, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Khuchua, Z.A. et al. The creatine kinase system and cardiomyopathy. Am. J. Cardiovasc. Pathol. 4, 223–234 (1992).

    CAS  PubMed  Google Scholar 

  55. De Sousa, E. et al. Subcellular creatine kinase alterations. Implications in heart failure. Circ. Res. 85, 68–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Kaasik, A. et al. Nitric oxide inhibits cardiac energy production via inhibition of mitochondrial creatine kinase. FEBS Lett. 444, 75–77 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant from the Austrian Cancer Society/Tyrol to A.V.K. and by grants from Deutsche Forschungsgemeinschaft (KU-911/15-1, SCHR-562/4-3) and BMBF (01GZ0704) to W.S.K., by Agence National de la Recherche (project no. BLAN07-2_188128) France and by grants of Estonian Science Foundation (N° 6142 and 7117) to V.S. The authors thank Drs. J. Troppmair and A. Amberger for their insightful comments on this manuscript and their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A., Veksler, V., Gellerich, F. et al. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3, 965–976 (2008). https://doi.org/10.1038/nprot.2008.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.61

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing