Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Paul Ehrlich's magic bullet concept: 100 years of progress

Abstract

Exceptional advances in molecular biology and genetic research have expedited cancer drug development tremendously. The declared paradigm is the development of 'personalized and tailored drugs' that precisely target the specific molecular defects of a cancer patient. It is therefore appropriate to revisit the intellectual foundations of the development of such agents, as many have shown great clinical success. One hundred years ago, Paul Ehrlich, the founder of chemotherapy, received the Nobel Prize for Physiology or Medicine. His postulate of creating 'magic bullets' for use in the fight against human diseases inspired generations of scientists to devise powerful molecular cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paul Ehrlich in his office.

References

  1. Ehrlich, P. Beiträge zur Theorie und Praxis der histologischen Färbung. Thesis, Univ. Leipzig (1878) (in German).

    Google Scholar 

  2. Ehrlich, P. Aus Theorie und Praxis der Chemotherapie. Folia Serologica 7, 697–714 (1911) (in German).

    CAS  Google Scholar 

  3. Bäumler, E. Paul Ehrlich. Forscher für das Leben. 3rd edn (Minerva, Frankfurt am Main, 1997) (in German).

  4. Ehrlich, P. Die Wertbemessung des Diphterie-heilserums und deren theoretische Grundlagen. Klinisches Jahrbuch 6, 299–326 (1897) (in German).

    Google Scholar 

  5. Ehrlich, P. Croonian lecture: on immunity with special reference to cell life. Proc. Roy. Soc. London 66, 424–448 (1900).

    Article  CAS  Google Scholar 

  6. Ehrlich, P. & Morgenroth, J. Die Seitenkettentheorie der Immunität. Anleitung zu hygienischen Untersuchungen: nach den im Hygienischen Institut der königl. Ludwig-Maximilians-Universität zu München üblichen Methoden zusammengestellt, 3 Aufl. 3, 381–394 (1902) (in German).

  7. Ehrlich, P. & Morgenroth, J. Wirkung und Entstehung der aktiven Stoffe im Serum nach der Seiten-kettentheorie. Handbuch der pathogenen Mikroorganismen 1, 430–451 (1904) (in German).

    Google Scholar 

  8. Ehrlich, P. Partial cell functions: Nobel lecture, December 11, 1908 in Physiology or Medicine: including presentation speeches and laureates' biographies 1901–1921 (Elsevier Publishing, Amsterdam, 1967).

    Google Scholar 

  9. Ehrlich, P. & Morgenroth, J. Ueber Haemolysine: dritte Mittheilung. Berliner klinische Wochenschrift 37, 453–458 (1900) (in German).

    Google Scholar 

  10. Ehrlich, P. & Sachs, H. Ueber den Mechanismus der Antiamboceptorwirkung. Berliner klinische Wochenschrift 557–558 (1905) (in German).

  11. Ehrlich, P. Chemotherapeutische Trypanosomen-Studien. Berliner klinische Wochenschrift 44, 233–236 (1907) (in German).

    CAS  Google Scholar 

  12. Ehrlich, P. Die Behandlung der Syphilis mit dem Ehrlichschen Präparat 606. Deutsche medizinische Wochenschrift 1893–1896 (1910) (in German).

  13. Fleming, A., Voureka, A., Kramer, I. R. & Hughes, W. H. The morphology and motility of Proteus vulgaris and other organisms cultured in the presence of penicillin. J. Gen. Microbiol. 4, 257–269 (1950).

    Article  CAS  PubMed  Google Scholar 

  14. Goodman, L. S. et al. Landmark article Sept. 21, 1946: Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 251, 2255–2261 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science 103, 409–436 (1946).

    Article  CAS  PubMed  Google Scholar 

  16. Karnofsky, D. A. Nitrogen mustards in the treatment of neoplastic disease. Adv. Intern. Med. 4, 1–75 (1950).

    CAS  PubMed  Google Scholar 

  17. Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574–578 (1963).

    Article  CAS  PubMed  Google Scholar 

  18. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  19. Heidelberger, C. et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179, 663–666 (1957).

    Article  CAS  PubMed  Google Scholar 

  20. Kohn, K. W., Spears, C. L. & Doty, P. Inter-strand crosslinking of DNA by nitrogen mustard. J. Mol. Biol. 19, 266–288 (1966).

    Article  CAS  PubMed  Google Scholar 

  21. Whittington, R. M. & Close, H. P. Clinical experience with mitomycin C (NSC-26980). Cancer Chemother. Rep. 54, 195–198 (1970).

    CAS  PubMed  Google Scholar 

  22. Crooke, S. T. & Bradner, W. T. Bleomycin, a review. J. Med. 7, 333–428 (1976).

    CAS  PubMed  Google Scholar 

  23. Rosenberg, B., Vancamp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

    Article  CAS  PubMed  Google Scholar 

  24. Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F. & Wolff, J. R. Temporary remissions in acute leukemia in children produced by folic antagonist, 4-aminopteroylglutamic acid (aminopterin). N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  25. Hitchings, G. H. & Elion, G. B. The chemistry and biochemistry of purine analogs. Ann. NY Acad. Sci. 60, 195–199 (1954).

    Article  CAS  PubMed  Google Scholar 

  26. Ehrlich, P. Chemotherapeutic studies on trypanosomes. J. Roy. Inst. Pub. Health 15, 449–456 (1907).

    Google Scholar 

  27. Frei, E. III et al. A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood 13, 1126–1148 (1958).

    PubMed  Google Scholar 

  28. Frei, E. III. A commentary. Selected considerations regarding chemotherapy as adjuvant in cancer treatment. Cancer Chemother. Rep. 50, 1–8 (1966).

    PubMed  Google Scholar 

  29. Frei, E. III, DeVita, V. T., Moxley, J. H. III & Carbone, P. P. Approaches to improving the chemotherapy of Hodgkin's disease. Cancer Res. 26, 1284–1289 (1966).

    PubMed  Google Scholar 

  30. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Bartram, C. R. et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306, 277–280 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Felsher, D. W. Cancer revoked: oncogenes as therapeutic targets. Nature Rev. Cancer 3, 375–380 (2003).

    Article  CAS  Google Scholar 

  35. de Carcer, G., de Castro, I. P. & Malumbres, M. Targeting cell cycle kinases for cancer therapy. Curr. Med. Chem. 14, 969–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Holtrich, U. et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc. Natl Acad. Sci. USA 91, 1736–1740 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer 6, 321–330 (2006).

    Article  CAS  Google Scholar 

  39. Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M. & Strebhardt, K. Effect of RNA silencing of polo-like kinase 1 (PLK1) on apoptosis and spindle formation in human cancer cells. J. Natl Cancer Inst. 94, 1863–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Kappel, S., Matthess, Y., Zimmer, B., Kaufmann, M. & Strebhardt, K. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res. 34, 4527–4536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blum, G., Gazit, A. & Levitzki, A. Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry 39, 15705–15712 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Reindl, W., Yuan, J., Kramer, A., Strebhardt, K. & Berg, T. Inhibition of Polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem. Biol. (in the press).

  44. Fong, T. A. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106 (1999).

    CAS  PubMed  Google Scholar 

  45. Jubb, A. M., Oates, A. J., Holden, S. & Koeppen, H. Predicting benefit from anti-angiogenic agents in malignancy. Nature Rev. Cancer 6, 626–635 (2006).

    Article  CAS  Google Scholar 

  46. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Faivre, S., Demetri, G., Sargent, W. & Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nature Rev. Drug Discov. 6, 734–745 (2007).

    Article  CAS  Google Scholar 

  49. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  Google Scholar 

  50. Atmaca, A. et al. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br. J. Cancer 97, 177–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gojo, I. et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109, 2781–2790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Karagiannis, T. C. & El Osta, A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21, 61–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Jameel, A. et al. Clinical and biological significance of HSP89 α in human breast cancer. Int. J. Cancer 50, 409–415 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Yano, M., Naito, Z., Tanaka, S. & Asano, G. Expression and roles of heat shock proteins in human breast cancer. Jpn. J. Cancer Res. 87, 908–915 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer 5, 761–772 (2005).

    Article  CAS  Google Scholar 

  56. Ramanathan, R. K. et al. Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin. Cancer Res. 13, 1769–1774 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Solit, D. B. et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin. Cancer Res. 13, 1775–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bagatell, R. et al. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin. Cancer Res. 13, 1783–1788 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Ehrlich, P. Über den jetzigen Stand der Karzinomforschung. Beiträge zur experimentellen Pathologie und Chemotherapie 117–164 (1909) (in German).

    Google Scholar 

  60. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  61. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nature Rev. Cancer 1, 118–129 (2001).

    Article  CAS  Google Scholar 

  62. Schrama, D., Reisfeld, R. A. & Becker, J. C. Antibody targeted drugs as cancer therapeutics. Nature Rev. Drug Discov. 5, 147–159 (2006).

    Article  CAS  Google Scholar 

  63. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Maloney, D. G. et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 (1997).

    CAS  PubMed  Google Scholar 

  66. McLaughlin, P. et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Di Gaetano, N. et al. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 171, 1581–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. van Mierlo, G. J. et al. CD40 stimulation leads to effective therapy of CD40 tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc. Natl Acad. Sci. USA 99, 5561–5566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Czuczman, M. S. et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J. Clin. Oncol. 23, 4390–4398 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Galizia, G. et al. Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 26, 3654–3660 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Jonker, D. J. et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med. 357, 2040–2048 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Herbst, R. S., Fukuoka, M. & Baselga, J. Gefitinib — novel targeted approach to treating cancer. Nature Rev. Cancer 4, 956–965 (2004).

    Article  CAS  Google Scholar 

  74. Chaudry, M. A., Sales, K., Ruf, P., Lindhofer, H. & Winslet, M. C. EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br. J. Cancer 96, 1013–1019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chatal, J. F. et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J. Clin. Oncol. 24, 1705–1711 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Tolcher, A. W. et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J. Clin. Oncol. 25, 1390–1395 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Hudziak, R. M. et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell Biol. 9, 1165–1172 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crowe, J. S., Hall, V. S., Smith, M. A., Cooper, H. J. & Tite, J. P. Humanized monoclonal antibody CAMPATH-1H: myeloma cell expression of genomic constructs, nucleotide sequence of cDNA constructs and comparison of effector mechanisms of myeloma and Chinese hamster ovary cell-derived material. Clin. Exp. Immunol. 87, 105–110 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prewett, M. et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J. Immunother. Emphasis Tumor Immunol. 19, 419–427 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Pastan, I., Hassan, R., FitzGerald, D. J. & Kreitman, R. J. Immunotoxin therapy of cancer. Nature Rev. Cancer 6, 559–565 (2006).

    Article  CAS  Google Scholar 

  82. Pennell, C. A. & Erickson, H. A. Designing immunotoxins for cancer therapy. Immunol. Res. 25, 177–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Khawli, L. A., Hu, P. & Epstein, A. L. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb. Exp. Pharmacol. 181, 291–328 (2008).

    Article  CAS  Google Scholar 

  84. Goldenberg, D. M. & Sharkey, R. M. Novel radiolabeled antibody conjugates. Oncogene 26, 3734–3744 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. von Mehren, M., Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy for cancer. Annu. Rev. Med. 54, 343–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  PubMed  Google Scholar 

  87. Sievers, E. L. & Linenberger, M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr. Opin. Oncol. 13, 522–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Arons, E. et al. Characterization of T-cell repertoire in hairy cell leukemia patients before and after recombinant immunotoxin BL22 therapy. Cancer Immunol. Immunother. 55, 1100–1110 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Mandler, R., Kobayashi, H., Hinson, E. R., Brechbiel, M. W. & Waldmann, T. A. Herceptin–geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res. 64, 1460–1467 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Seidman, A. et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol. 20, 1215–1221 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Byrd, J. C. et al. Rituximab therapy in hematologic malignancy patients with circulating blood tumor cells: association with increased infusion-related side effects and rapid blood tumor clearance. J. Clin. Oncol. 17, 791–795 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Zee-Cheng, R. K. & Cheng, C. C. Screening and evaluation of anticancer agents. Methods Find. Exp. Clin. Pharmacol. 10, 67–101 (1988).

    CAS  PubMed  Google Scholar 

  94. Issell, B. F. & Crooke, S. T. Maytansine. Cancer Treat. Rev. 5, 199–207 (1978).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, X. J. & Rahmani, R. Preclinical and clinical pharmacology of vinca alkaloids. Drugs 44 (Suppl 4), 1–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Cores, E. P., Holland, J. F., Wang, J. J. & Sinks, L. F. Doxorubicin in disseminated osteosarcoma. JAMA 221, 1132–1138 (1972).

    Article  CAS  PubMed  Google Scholar 

  97. Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. Jr. The vinca alkaloids: a new class of oncolytic agents. Cancer Res. 23, 1390–1427 (1963).

    CAS  PubMed  Google Scholar 

  98. Rowinsky, E. K. & Donehower, R. C. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol. Ther. 52, 35–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Uppuluri, S., Knipling, L., Sackett, D. L. & Wolff, J. Localization of the colchicine-binding site of tubulin. Proc. Natl Acad. Sci. USA 90, 11598–11602 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Damayanthi, Y. & Lown, J. W. Podophyllotoxins: current status and recent developments. Curr. Med. Chem. 5, 205–252 (1998).

    CAS  PubMed  Google Scholar 

  101. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    Article  CAS  PubMed  Google Scholar 

  102. Fuchs, D. A. & Johnson, R. K. Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat. Rep. 62, 1219–1222 (1978).

    CAS  PubMed  Google Scholar 

  103. Giannakakou, P. et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc. Natl Acad. Sci. USA 97, 2904–2909 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ehrlich, P. Über den jetzigen Stand der Chemotherapie. Berichte der Deutschen Chemischen Gesellschaft 42, 17–47 (1909) (in German).

    Google Scholar 

  105. Panthananickal, A., Hansch, C. & Leo, A. Structure–activity relationship of aniline mustards acting against B-16 melanoma in mice. J. Med. Chem. 22, 1267–1269 (1979).

    Article  CAS  PubMed  Google Scholar 

  106. Hansch, C., Hoekman, D. & Gao, H. Comparative QSAR: toward a deeper understanding of chemicobiological interactions. Chem. Rev. 96, 1045–1076 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 1999. J. Comb. Chem. 2, 383–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Thomas, R. K. et al. High-throughput oncogene mutation profiling in human cancer. Nature Genet. 39, 347–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Thomas, R. K. et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nature Med. 12, 852–855 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Weir, B. A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Haney, S. A. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets. Expert Opin. Ther. Targets. 11, 1429–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Konig, R. et al. A probability-based approach for the analysis of large-scale RNAi screens. Nature Meth. 4, 847–849 (2007).

    Article  CAS  Google Scholar 

  113. Delucas, L. J. et al. Protein crystallization: virtual screening and optimization. Prog. Biophys. Mol. Biol. 88, 285–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Sarver, R. W. et al. Binding thermodynamics of substituted diaminopyrimidine renin inhibitors. Anal. Biochem. 360, 30–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Sharp, S. Y. et al. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol. Cancer Ther. 6, 1198–1211 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, J. & Ramnarayan, K. Toward designing drug-like libraries: a novel computational approach for prediction of drug feasibility of compounds. J. Comb. Chem. 1, 524–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules. Nature Rev. Drug Discov. 4, 649–663 (2005).

    Article  CAS  Google Scholar 

  119. Yang, J., Shamji, A., Matchacheep, S. & Schreiber, S. L. Identification of a small-molecule inhibitor of class Ia PI3Ks with cell-based screening. Chem. Biol. 14, 371–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Motzer, R. J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Smith, I. E. Trastuzumab for early breast cancer. Lancet 367, 107 (2006).

    Article  PubMed  Google Scholar 

  123. Barnett, D., Stevens, A. & Longson, C. Appraisal of bevacizumab and cetuximab for treatment of metastatic colorectal cancer in the UK. Lancet Oncol. 7, 807–808 (2006).

    Article  PubMed  Google Scholar 

  124. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Mayer, E. L., Lin, N. U. & Burstein, H. J. Novel approaches to advanced breast cancer: bevacizumab and lapatinib. J. Natl Compr. Cancer Netw. 5, 314–323 (2007).

    Article  CAS  Google Scholar 

  126. Richon, V. M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl Acad. Sci. USA 95, 3003–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stebbins, C. E. et al. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Hodgson, J. ADMET--turning chemicals into drugs. Nature Biotechnol. 19, 722–726 (2001).

    Article  CAS  Google Scholar 

  129. Finnin, M. S. et al. StructuRes. of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Med. 12, 908–916 (2006).

    Article  PubMed  CAS  Google Scholar 

  131. Strebhardt, K. & Ullrich, A. Another look at imatinib mesylate. N. Engl. J. Med. 355, 2481–2482 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Chu, T. F. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370, 2011–2019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Daub, H., Specht, K. & Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nature Rev. Drug Discov. 3, 1001–1010 (2004).

    Article  CAS  Google Scholar 

  134. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Shah, N. P. et al. Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112, 831–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, Y. & Gray, N. S. Rational design of inhibitors that bind to inactive kinase conformations. Nature Chem. Biol. 2, 358–364 (2006).

    Article  CAS  Google Scholar 

  139. Levinson, N. M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Guilhot, F. et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 109, 4143–4150 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Lombardo, L. J. et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr–Abl. Cancer Cell 7, 129–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  145. Becher, O. J. & Holland, E. C. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 66, 3355–3358, discussion 3358–3359 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Sharpless, N. E. & DePinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  Google Scholar 

  147. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nature Rev. Cancer 7, 645–658 (2007).

    Article  CAS  Google Scholar 

  148. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nature Rev. Cancer 5, 845–856 (2005).

    Article  CAS  Google Scholar 

  149. Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF–MEK–ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Carlomagno, F. et al. BAY 43–9006 inhibition of oncogenic RET mutants. J. Natl Cancer Inst. 98, 326–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Godl, K. et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl Acad. Sci. USA 100, 15434–15439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Espina, V., Wulfkuhle, J. D., Calvert, V. S., Petricoin, E. F. III & Liotta, L. A. Reverse phase protein microarrays for monitoring biological responses. Methods Mol. Biol. 383, 321–336 (2007).

    CAS  PubMed  Google Scholar 

  156. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Buchdunger, E. et al. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc. Natl Acad. Sci. USA 92, 2558–2562 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  159. Zimmermann, J. et al. Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch. Pharm. (Weinheim) 329, 371–376 (1996).

    Article  CAS  Google Scholar 

  160. Coussens, L. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139 (1985).

    Article  CAS  PubMed  Google Scholar 

  161. Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kappel for establishing the list of references. This work was supported by grants from the Deutsche Krebshilfe, Messer Stiftung, Sander Stiftung, Schleussner Stiftung, Else Kröner-Fresenius/Carls-Stiftung and the Dresdner Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Strebhardt.

Related links

Related links

DATABASES

National cancer institute

acute lymphoblastic leukaemia

anaplastic large-cell lymphoma

breast cancer

chronic myeloid leukaemia

colorectal cancer

non-Hodgkin lyphoma

NSCLC

ovarian cancer

renal cell carcinoma

National cancer institute Drug Dictionary

5-fluorouracil

6-mercaptopurine

alemtuzumab

aminopterin

bevacizumab

BL22

bleomycin

cetuximab

cisplatin

dasatinib

gefitinib

gemtuzumab ozogamicin

imatinib

lapatinib

leucovorin

maytansine

methotrexate

mitomycin C

nilotinib

rituximab

sorafenib

sunitinib

trastuzumab

vincristine

FURTHER INFORMATION

K. Strebhardt's homepage

The Nobel Prize in Physiology or Medicine 1908

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strebhardt, K., Ullrich, A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8, 473–480 (2008). https://doi.org/10.1038/nrc2394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing