Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma

Key Points

  • Malignant gliomas and medulloblastomas — the most common brain tumours affecting adults and children, respectively — remain responsible for a disproportionate level of morbidity and mortality among cancer patients.

  • The morphological histopathology traditionally used for the subclassification of these brain tumour variants is gradually giving way to more molecularly grounded criteria that better reflect the underlying biology.

  • Recent integrated genomics has further implicated specific molecular networks in the pathogenesis of gliomas and medulloblastomas. These most prominently include receptor tyrosine kinase (RTK) signalling through the Ras–MAPK and PI3K–AKT–mTOR pathways, Wnt signalling and sonic hedgehog (SHH) signalling, along with the cell cycle-regulating RB and p53 pathways.

  • Expression analysis has recently defined transcriptional subclasses for both malignant gliomas and medulloblastomas that seem to be driven by distinct abnormalities in core signalling pathways. Such findings suggest that tumours in a particular molecular subgroup would preferentially respond to different targeted therapies.

  • Malignant gliomas and medulloblastomas also exhibit heterogeneity at the cellular level, with subpopulations of tumour cells harbouring stem-like properties rendering them more resistant to therapy. Such stem-like pools seem to reside in specialized microenvironments that actively maintain their biological characteristics.

  • Treatment challenges posed by malignant gliomas and medulloblastomas remain considerable, and many derive from the molecular and cellular heterogeneity inherent to these tumour variants. They include innate and acquired resistance and the obstacle to effective drug delivery posed by the blood–brain barrier.

Abstract

Malignant brain tumours continue to be the cause of a disproportionate level of morbidity and mortality across a wide range of individuals. The most common variants in the adult and paediatric populations — malignant glioma and medulloblastoma, respectively — have been the subject of increasingly intensive research over the past two decades that has led to considerable advances in the understanding of their basic biology and pathogenesis. This Review summarizes these developments in the context of the evolving notion of molecular pathology and discusses the implications that this work has on the design of new treatment regimens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The neuroglial lineage tree.
Figure 2: Current World Health Organization (WHO) classifications for diffuse glioma and medulloblastoma.
Figure 3: Schematic of molecular pathways implicated in the pathogenesis of glioma.
Figure 4: The molecular networks implicated in the pathogenesis of medulloblastoma.

Similar content being viewed by others

References

  1. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    CAS  PubMed  Google Scholar 

  3. Gilbertson, R. J. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 5, 209–218 (2004).

    PubMed  Google Scholar 

  4. Bailey, P. & Cushing, H. A Classification of Tumoursof the Glioma Group on a Histogenic Basis (J. B Lippincott, Philadelphia, 1926).

    Google Scholar 

  5. Kernohan, J. W., Mabon, R. F. & Svien, H. J. A simplified classification of gliomas. Proc. Staff Meetings Mayo Clinic 24, 71–74 (1949).

    CAS  Google Scholar 

  6. Ringertz, N. Grading of gliomas. Acta Pathol Microbiol Scand. 27, 51–65 (1950).

    CAS  PubMed  Google Scholar 

  7. Zülch, K. J. (ed.) Histological typing of tumours of the central nervous system (World Health Organization, Switzerland, 1979).

    Google Scholar 

  8. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007). This paper establishes the current morphological and molecular criteria for the subclassification of brain tumours.

    PubMed  PubMed Central  Google Scholar 

  9. Dropcho, E. J. & Soong, S. J. The prognostic impact of prior low grade histology in patients with anaplastic gliomas: a case-control study. Neurology 47, 684–690 (1996).

    CAS  PubMed  Google Scholar 

  10. Ohgaki, H. & Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 64, 479–489 (2005).

    CAS  PubMed  Google Scholar 

  11. Ohgaki, H. et al. A case history of glioma progression. Acta Neuropathol. 97, 525–532 (1999).

    CAS  PubMed  Google Scholar 

  12. Scherer, H. J. Cerebral astrocytomas and their derivatives. Am. J. Cancer 40, 159–198 (1940).

    Google Scholar 

  13. Rutkowski, S. et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352, 978–986 (2005).

    CAS  PubMed  Google Scholar 

  14. Sure, U. et al. Staging, scoring and grading of medulloblastoma. A postoperative prognosis predicting system based on the cases of a single institute. Acta Neurochir. (Wien) 132, 59–65 (1995).

    CAS  Google Scholar 

  15. Brown, H. G. et al. “Large cell/anaplastic” medulloblastomas: a Pediatric Oncology Group Study. J. Neuropathol. Exp. Neurol. 59, 857–865 (2000).

    CAS  PubMed  Google Scholar 

  16. Giangaspero, F. et al. Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am. J. Surg. Pathol. 16, 687–693 (1992).

    CAS  PubMed  Google Scholar 

  17. Giangaspero, F. et al. Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol. 112, 5–12 (2006).

    PubMed  Google Scholar 

  18. McManamy, C. S. et al. Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J. Neuropathol. Exp. Neurol. 62, 627–632 (2003).

    PubMed  Google Scholar 

  19. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    CAS  PubMed  Google Scholar 

  20. Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W. & Chang, E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    CAS  PubMed  Google Scholar 

  21. Louis, D. N. The p53 gene and protein in human brain tumors. J. Neuropathol. Exp. Neurol. 53, 11–21 (1994).

    CAS  PubMed  Google Scholar 

  22. Libermann, T. A. et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313, 144–147 (1985).

    CAS  PubMed  Google Scholar 

  23. Libermann, T. A. et al. Expression of epidermal growth factor receptors in human brain tumors. Cancer Res. 44, 753–760 (1984).

    CAS  PubMed  Google Scholar 

  24. Wong, A. J. et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89, 2965–2969 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Frederick, L., Wang, X. Y., Eley, G. & James, C. D. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 60, 1383–1387 (2000).

    CAS  PubMed  Google Scholar 

  26. Sugawa, N., Ekstrand, A. J., James, C. D. & Collins, V. P. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl Acad. Sci. USA 87, 8602–8606 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cairncross, J. G. et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J. Natl Cancer Inst. 90, 1473–1479 (1998).

    CAS  PubMed  Google Scholar 

  28. Reifenberger, G. et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am. J. Pathol. 145, 1175–1190 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, J. S. et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 18, 4144–4152 (1999).

    CAS  PubMed  Google Scholar 

  30. Barbashina, V., Salazar, P., Holland, E. C., Rosenblum, M. K. & Ladanyi, M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin. Cancer Res. 11, 1119–1128 (2005).

    CAS  PubMed  Google Scholar 

  31. Costello, J. F. et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 57, 1250–1254 (1997).

    CAS  PubMed  Google Scholar 

  32. Henson, J. W. et al. The retinoblastoma gene is involved in the malignant progression of astrocytomas. Ann. Neurol. 36, 714–721 (1994).

    CAS  PubMed  Google Scholar 

  33. Reifenberger, G., Reifenberger, J., Ichimura, K., Meltzer, P. S. & Collins, V. P. Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res. 54, 4299–4303 (1994).

    CAS  PubMed  Google Scholar 

  34. Watanabe, T. et al. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendroglioma. J. Neuropathol. Exp. Neurol. 60, 1181–1190 (2001).

    CAS  PubMed  Google Scholar 

  35. Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nature Genet. 41, 899–904 (2009).

    CAS  PubMed  Google Scholar 

  36. Wrensch, M. et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nature Genet. 41, 905–908 (2009). References 35 and 36 are large genome-wide association screens identifying low-penetrance susceptibility alleles that increase glioma risk.

    CAS  PubMed  Google Scholar 

  37. Dai, C. et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15, 1913–1925 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu, X. et al. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7, 356–368 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Uhrbom, L., Nerio, E. & Holland, E. C. Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nature Med. 10, 1257–1260 (2004).

    CAS  PubMed  Google Scholar 

  40. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reilly, K. M., Loisel, D. A., Bronson, R. T., McLaughlin, M. E. & Jacks, T. Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genet. 26, 109–113 (2000).

    CAS  PubMed  Google Scholar 

  42. Weiss, W. A. et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 63, 1589–1595 (2003).

    CAS  PubMed  Google Scholar 

  43. Xiao, A., Wu, H., Pandolfi, P. P., Louis, D. N. & Van Dyke, T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1, 157–168 (2002).

    CAS  PubMed  Google Scholar 

  44. Xiao, A. et al. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res. 65, 5172–5180 (2005).

    CAS  PubMed  Google Scholar 

  45. Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Rocco, F., Carroll, R. S., Zhang, J. & Black, P. M. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42, 341–346 (1998).

    CAS  PubMed  Google Scholar 

  48. Westermark, B., Heldin, C. H. & Nister, M. Platelet-derived growth factor in human glioma. Glia 15, 257–263 (1995).

    CAS  PubMed  Google Scholar 

  49. Clarke, I. D. & Dirks, P. B. A human brain tumor-derived PDGFR-α deletion mutant is transforming. Oncogene 22, 722–733 (2003).

    CAS  PubMed  Google Scholar 

  50. Abounader, R. & Laterra, J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 7, 436–451 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guha, A., Feldkamp, M. M., Lau, N., Boss, G. & Pawson, A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15, 2755–2765 (1997).

    CAS  PubMed  Google Scholar 

  52. Wang, H. et al. Analysis of the activation status of Akt, NFkB, and Stat3 in human diffuse gliomas. Lab. Invest. 84, 941–951 (2004).

    CAS  PubMed  Google Scholar 

  53. James, C. D. et al. Clonal genomic alterations in glioma malignancy stages. Cancer Res. 48, 5546–5551 (1988).

    CAS  PubMed  Google Scholar 

  54. Ding, H. et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 63, 1106–1113 (2003).

    CAS  PubMed  Google Scholar 

  55. Shih, A. H. et al. Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res. 64, 4783–4789 (2004).

    CAS  PubMed  Google Scholar 

  56. Uhrbom, L. et al. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62, 5551–5558 (2002).

    CAS  PubMed  Google Scholar 

  57. Uhrbom, L., Hesselager, G., Nister, M. & Westermark, B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 58, 5275–5279 (1998).

    CAS  PubMed  Google Scholar 

  58. Wei, Q. et al. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res. 66, 7429–7437 (2006).

    CAS  PubMed  Google Scholar 

  59. Zhu, H. et al. Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc. Natl Acad. Sci. USA 106, 2712–2716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ding, H. et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 61, 3826–3836 (2001).

    CAS  PubMed  Google Scholar 

  61. Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet. 25, 55–57 (2000).

    CAS  PubMed  Google Scholar 

  62. Kwon, C. H. et al. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res. 68, 3286–3294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Llaguno, S. A. et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15, 45–56 (2009).

    CAS  Google Scholar 

  64. Burton, E. C. et al. Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma. Cancer Res. 62, 6205–6210 (2002).

    CAS  PubMed  Google Scholar 

  65. Hui, A. B., Lo, K. W., Yin, X. L., Poon, W. S. & Ng, H. K. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab. Invest. 81, 717–723 (2001).

    CAS  PubMed  Google Scholar 

  66. Maher, E. A. et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 66, 11502–11513 (2006).

    CAS  PubMed  Google Scholar 

  67. Misra, A. et al. Array comparative genomic hybridization identifies genetic subgroups in grade 4 human astrocytoma. Clin. Cancer Res. 11, 2907–2918 (2005).

    CAS  PubMed  Google Scholar 

  68. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). This study reports large-scale, integrated genomic analysis revealing the central importance of certain core signalling pathways in the pathogenesis of malignant glioma.

  69. Nigro, J. M. et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 65, 1678–1686 (2005).

    CAS  PubMed  Google Scholar 

  70. Nishizaki, T. et al. Clinical evidence of distinct subgroups of astrocytic tumors defined by comparative genomic hybridization. Hum. Pathol. 31, 608–614 (2000).

    CAS  PubMed  Google Scholar 

  71. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008). This study reached many of the same conclusions as reference 68 but also identified pathogenic mutations in IDH1.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bredel, M. et al. A network model of a cooperative genetic landscape in brain tumors. JAMA 302, 261–275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 118, 469–474 (2009).

    PubMed  Google Scholar 

  75. Sanson, M. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol. 27, 4150–4154 (2009).

    CAS  PubMed  Google Scholar 

  76. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009). This study identifies a potential pathogenic mechanism for mutations in IDH proteins relating to a loss of enzymatic function.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jensen, R. L. Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J. Neurooncol. 92, 317–335 (2009).

    CAS  PubMed  Google Scholar 

  78. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009). This study identifies the abnormal production of 2-HG as a potential pathogenic mechanism for IDH mutations in glioma.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huse, J. T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 23, 1327–1337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, H. et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc. Natl Acad. Sci. USA 107, 2183–2188 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Y. et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 69, 7569–7576 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Novakova, J., Slaby, O., Vyzula, R. & Michalek, J. MicroRNA involvement in glioblastoma pathogenesis. Biochem. Biophys. Res. Commun. 386, 1–5 (2009).

    CAS  PubMed  Google Scholar 

  84. Godard, S. et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res. 63, 6613–6625 (2003).

    CAS  PubMed  Google Scholar 

  85. Nutt, C. L. et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63, 1602–1607 (2003).

    CAS  PubMed  Google Scholar 

  86. Li, A. et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 69, 2091–2099 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liang, Y. et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl Acad. Sci. USA 102, 5814–5819 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006). This study uses transcriptional profiling to subdivide malignant gliomas into distinct categories that differ in their neurobiological characteristics and clinical prognoses.

    CAS  PubMed  Google Scholar 

  89. Horvath, S. et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl Acad. Sci. USA 103, 17402–17407 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Brennan, C. et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4, e7752 (2009). This study uses an integrated genomics analysis of TCGA data coupled with proteomics in a second large tumour set to link glioma transcriptional subclasses with defined core signalling abnormalities.

    PubMed  PubMed Central  Google Scholar 

  91. Verhaak, R. G. W. et al. An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2009). This study uses TCGA data and an integrated genomics approach to associate glioma transcriptional subclasses with distinct abnormalities in specific genes.

    Google Scholar 

  92. Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010).

    CAS  PubMed  Google Scholar 

  93. Entz-Werle, N. et al. Medulloblastoma: what is the role of molecular genetics? Expert Rev. Anticancer Ther. 8, 1169–1181 (2008).

    CAS  PubMed  Google Scholar 

  94. Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res. 57, 2085–2088 (1997).

    CAS  PubMed  Google Scholar 

  95. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  PubMed  Google Scholar 

  96. Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).

    CAS  PubMed  Google Scholar 

  97. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nature Genet. 31, 306–310 (2002).

    CAS  PubMed  Google Scholar 

  98. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    CAS  PubMed  Google Scholar 

  99. Pomeroy, S. L. & Sturla, L. M. Molecular biology of medulloblastoma therapy. Pediatr. Neurosurg. 39, 299–304 (2003).

    PubMed  Google Scholar 

  100. Schuller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, Z. J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Browd, S. R. et al. N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res. 66, 2666–2672 (2006).

    CAS  PubMed  Google Scholar 

  103. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    CAS  PubMed  Google Scholar 

  104. Hallahan, A. R. et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 64, 7794–7800 (2004).

    CAS  PubMed  Google Scholar 

  105. Hatton, B. A. et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 68, 1768–1776 (2008).

    CAS  PubMed  Google Scholar 

  106. Lee, Y. et al. Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res. 66, 6964–6971 (2006).

    CAS  PubMed  Google Scholar 

  107. McCall, T. D., Pedone, C. A. & Fults, D. W. Apoptosis suppression by somatic cell transfer of Bcl-2 promotes Sonic hedgehog-dependent medulloblastoma formation in mice. Cancer Res. 67, 5179–5185 (2007).

    CAS  PubMed  Google Scholar 

  108. Pazzaglia, S. et al. High incidence of medulloblastoma following X-ray-irradiation of newborn Ptc1 heterozygous mice. Oncogene 21, 7580–7584 (2002).

    CAS  PubMed  Google Scholar 

  109. Pazzaglia, S. et al. Linking DNA damage to medulloblastoma tumorigenesis in patched heterozygous knockout mice. Oncogene 25, 1165–1173 (2006).

    CAS  PubMed  Google Scholar 

  110. Rao, G. et al. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23, 6156–6162 (2004).

    CAS  PubMed  Google Scholar 

  111. Rao, R. D. et al. Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 7, 921–929 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wetmore, C., Eberhart, D. E. & Curran, T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res. 61, 513–516 (2001).

    CAS  PubMed  Google Scholar 

  113. Zurawel, R. H., Allen, C., Wechsler-Reya, R., Scott, M. P. & Raffel, C. Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosom. Cancer 28, 77–81 (2000).

    CAS  PubMed  Google Scholar 

  114. Eberhart, C. G., Tihan, T. & Burger, P. C. Nuclear localization and mutation of beta-catenin in medulloblastomas. J. Neuropathol. Exp. Neurol. 59, 333–337 (2000).

    CAS  PubMed  Google Scholar 

  115. Rossi, A., Caracciolo, V., Russo, G., Reiss, K. & Giordano, A. Medulloblastoma: from molecular pathology to therapy. Clin. Cancer Res. 14, 971–976 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Baeza, N., Masuoka, J., Kleihues, P. & Ohgaki, H. AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22, 632–636 (2003).

    CAS  PubMed  Google Scholar 

  117. Huang, H. et al. APC mutations in sporadic medulloblastomas. Am. J. Pathol. 156, 433–437 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Koch, A. et al. Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int. J. Cancer 121, 284–291 (2007).

    CAS  PubMed  Google Scholar 

  119. Koch, A. et al. Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int. J. Cancer 93, 445–449 (2001).

    CAS  PubMed  Google Scholar 

  120. Zurawel, R. H., Chiappa, S. A., Allen, C. & Raffel, C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res. 58, 896–899 (1998).

    CAS  PubMed  Google Scholar 

  121. Ellison, D. W. et al. β-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23, 7951–7957 (2005).

    CAS  PubMed  Google Scholar 

  122. Momota, H., Shih, A. H., Edgar, M. A. & Holland, E. C. c-Myc and β-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene 27, 4392–4401 (2008).

    CAS  PubMed  Google Scholar 

  123. Biegel, J. A. et al. Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin. Cancer Res. 3, 473–478 (1997).

    CAS  PubMed  Google Scholar 

  124. Bigner, S. H., Mark, J., Friedman, H. S., Biegel, J. A. & Bigner, D. D. Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet. Cytogenet. 30, 91–101 (1988).

    CAS  PubMed  Google Scholar 

  125. Cogen, P. H. & McDonald, J. D. Tumor suppressor genes and medulloblastoma. J. Neurooncol. 29, 103–112 (1996).

    CAS  PubMed  Google Scholar 

  126. Lamont, J. M., McManamy, C. S., Pearson, A. D., Clifford, S. C. & Ellison, D. W. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin. Cancer Res. 10, 5482–5493 (2004).

    CAS  PubMed  Google Scholar 

  127. Nicholson, J., Wickramasinghe, C., Ross, F., Crolla, J. & Ellison, D. Imbalances of chromosome 17 in medulloblastomas determined by comparative genomic hybridisation and fluorescence in situ hybridisation. Mol. Pathol. 53, 313–319 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Steichen-Gersdorf, E., Baumgartner, M., Kreczy, A., Maier, H. & Fink, F. M. Deletion mapping on chromosome 17p in medulloblastoma. Br. J. Cancer 76, 1284–1287 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vagner-Capodano, A. M. et al. Detection of i(17q) chromosome by fluorescent in situ hybridization (FISH) with interphase nuclei in medulloblastoma. Cancer Genet. Cytogenet. 78, 1–6 (1994).

    CAS  PubMed  Google Scholar 

  130. Tomlinson, F. H. et al. Aggressive medulloblastoma with high-level N-myc amplification. Mayo Clin. Proc. 69, 359–365 (1994).

    CAS  PubMed  Google Scholar 

  131. Lee, Y. et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26, 6442–6447 (2007).

    CAS  PubMed  Google Scholar 

  132. Uziel, T. et al. The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes Dev. 19, 2656–2667 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Aldosari, N. et al. MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children's Oncology Group. Arch. Pathol. Lab. Med. 126, 540–544 (2002).

    PubMed  Google Scholar 

  134. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell 133, 217–222 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rao, G., Pedone, C. A., Coffin, C. M., Holland, E. C. & Fults, D. W. c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5, 198–204 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. MacDonald, T. J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genet. 29, 143–152 (2001).

    CAS  PubMed  Google Scholar 

  137. Gilbertson, R. et al. Clinical and molecular stratification of disease risk in medulloblastoma. Br. J. Cancer 85, 705–712 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Calabrese, C., Frank, A., Maclean, K. & Gilbertson, R. Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ERKM. J. Biol. Chem. 278, 24951–24959 (2003).

    CAS  PubMed  Google Scholar 

  139. Hernan, R. et al. ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res. 63, 140–148 (2003).

    CAS  PubMed  Google Scholar 

  140. Gilbertson, R. et al. Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosom. Cancer 31, 288–294 (2001).

    CAS  PubMed  Google Scholar 

  141. Gajjar, A. et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J. Clin. Oncol. 22, 984–993 (2004).

    CAS  PubMed  Google Scholar 

  142. Gilbertson, R. J., Pearson, A. D., Perry, R. H., Jaros, E. & Kelly, P. J. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br. J. Cancer 71, 473–477 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gilbertson, R. J., Perry, R. H., Kelly, P. J., Pearson, A. D. & Lunec, J. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res. 57, 3272–3280 (1997).

    CAS  PubMed  Google Scholar 

  144. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    CAS  PubMed  Google Scholar 

  145. Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3, e3088 (2008).

    PubMed  PubMed Central  Google Scholar 

  146. Thompson, M. C. et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924–1931 (2006). References 145 and 146 establish transcriptional subclasses of medulloblastoma and links each to specific genomic and/or transcriptional characteristics.

    CAS  PubMed  Google Scholar 

  147. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

  148. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    CAS  PubMed  Google Scholar 

  149. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  150. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  151. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  152. Blazek, E. R., Foutch, J. L. & Maki, G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 67, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  153. Ogden, A. T. et al. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62, 505–515 (2008).

    PubMed  Google Scholar 

  154. Wang, J. et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer 122, 761–768 (2008).

    CAS  PubMed  Google Scholar 

  155. Cheng, J. X., Liu, B. L. & Zhang, X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev. 35, 403–408 (2009).

    CAS  PubMed  Google Scholar 

  156. Gilbertson, R. J. & Rich, J. N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Rev. Cancer 7, 733–736 (2007).

    CAS  Google Scholar 

  157. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    CAS  PubMed  Google Scholar 

  158. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons an glia. Proc. Natl Acad. Sci. USA 90, 2074–2077 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Riquelme, P. A., Drapeau, E. & Doetsch, F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 123–137 (2008).

    PubMed  Google Scholar 

  160. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007). This study demonstrates that brain tumour cells with stem cell-like characteristics localize in a perivascular distribution and require microvasculature for their tumour-initiating capacity.

    CAS  PubMed  Google Scholar 

  161. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    CAS  PubMed  Google Scholar 

  162. Li, Z., Wang, H., Eyler, C. E., Hjelmeland, A. B. & Rich, J. N. Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J. Biol. Chem. 284, 16705–16709 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Becher, O. J. et al. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res. 68, 2241–2249 (2008).

    CAS  PubMed  Google Scholar 

  164. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Heddleston, J. M., Li, Z., McLendon, R. E., Hjelmeland, A. B. & Rich, J. N. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8, 3274–3284 (2009).

    CAS  PubMed  Google Scholar 

  167. Wang, Z., Li, Y., Banerjee, S. & Sarkar, F. H. Emerging role of Notch in stem cells and cancer. Cancer Lett. 279, 8–12 (2009).

    CAS  PubMed  Google Scholar 

  168. Shih, A. H. & Holland, E. C. Notch signaling enhances nestin expression in gliomas. Neoplasia 8, 1072–1082 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Bhattacharya, S., Das, A., Mallya, K. & Ahmad, I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J. Cell Sci. 120, 2652–2662 (2007).

    CAS  PubMed  Google Scholar 

  170. Fan, X. et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66, 7445–7452 (2006).

    CAS  PubMed  Google Scholar 

  171. Bleau, A. M. et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226–235 (2009). This study demonstrates that PI3K–AKT–mTOR signalling regulates the expression of stem-like characteristics in glioma cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Charles, N. et al. Nitric oxide drives notch signaling and stem cell-like character via PKG in the perivascular niche of PDGF gliomas. Cell Stem Cell. 6, 141–152 (2010).

    CAS  PubMed  Google Scholar 

  173. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Hambardzumyan, D., Amankulor, N. M., Helmy, K. Y., Becher, O. J. & Holland, E. C. Modeling Adult Gliomas Using RCAS/t-va Technology. Transl. Oncol. 2, 89–95 (2009).

    PubMed  PubMed Central  Google Scholar 

  175. Lindberg, N., Kastemar, M., Olofsson, T., Smits, A. & Uhrbom, L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 28, 2266–2275 (2009).

    CAS  PubMed  Google Scholar 

  176. Assanah, M. et al. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J. Neurosci. 26, 6781–6790 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bleau, A. M., Huse, J. T. & Holland, E. C. The ABCG2 resistance network of glioblastoma. Cell Cycle 8, 2936–2944 (2009).

    PubMed  Google Scholar 

  178. Wick, W., Platten, M. & Weller, M. New (alternative) temozolomide regimens for the treatment of glioma. Neuro Oncol. 11, 69–79 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005). This trial of EGFR kinase inhibitors suggests that patients with both the EGFR vIII mutation and intact PTEN may be a molecularly defined subgroup that is more likely to respond to targeted kinase inhibition.

    CAS  PubMed  Google Scholar 

  180. Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Huse, J. T. & Holland, E. C. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol. 19, 132–143 (2009).

    CAS  PubMed  Google Scholar 

  182. Charest, A. et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phospatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 66, 7473–7481 (2006).

    CAS  PubMed  Google Scholar 

  183. Lassman, A. B. et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin. Cancer Res. 11, 7841–7850 (2005).

    CAS  PubMed  Google Scholar 

  184. Liebner, S. et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100, 323–331 (2000).

    CAS  PubMed  Google Scholar 

  185. de Vries, N. A., Beijnen, J. H., Boogerd, W. & van Tellingen, O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev. Neurother 6, 1199–1209 (2006).

    CAS  PubMed  Google Scholar 

  186. Laquintana, V. et al. New strategies to deliver anticancer drugs to brain tumors. Expert Opin. Drug Deliv. 6, 1017–1032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Rosenblum for providing representative tumour micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Holland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

miRBase 

miR-137

miR-21

miR-221

miR-222

miR-34a

National Cancer Institute Drug Dictionary 

erlotinib

temozolomide

OMIM

Gorlin's syndrome

Li–Fraumeni syndrome

Pathway Interaction Database 

Rb

FURTHER INFORMATION

Eric C. Holland's homepage

Jason T. Huse's homepage

Glossary

Malignant glioma

Diffuse glioma of astrocytic, oligodendroglial or mixed lineage with a World Health Organization grade of either III or IV.

Glial

Pertaining to glia, the non-neuronal support cells in the nervous system.

Neuronal

Pertaining to neurons, the primary functional unit of the nervous system.

Histogenesis

The origin of a tissue or tumour especially with regard to its development and formation.

Variant III deletion

Pathogenic deletion mutant of EGFR involving exons 2–7 that leads to a constitutively active truncated protein.

Neurofibromatosis type 1

Hereditary cancer-predisposing syndrome caused by mutations in NF1 and characterized most commonly by neurofibromas, optic gliomas and malignant peripheral nerve sheath tumours.

Turcot's syndrome

Hereditary cancer-predisposing syndrome caused by mutations in APC and most commonly characterized by adenomatous polyposis of the colon and an increased incidence of neuroepithelial tumours.

Supratentorial PNET

A class of PNET arising in the forebrain that is distinct from medulloblastoma.

Atypical teratoid/rhabdoid tumour

An aggressive brain tumour variant that occurs in young children and is characterized by loss of the transcription factor integrase interactor 1 (INI1).

Perivascular niche

A specialized microenvironment intimately associated with the microvasculature where the plurality of brain tumour stem-like cells seem to reside.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huse, J., Holland, E. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10, 319–331 (2010). https://doi.org/10.1038/nrc2818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2818

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer