Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tetraspanin proteins promote multiple cancer stages

Key Points

  • New evidence from in vivo mouse models confirms that tetraspanin proteins can contribute substantially to tumour initiation, promotion and progression.

  • In vivo evidence also shows that the tetraspanin CD151 makes substantial contributions to metastasis, and tetraspanin 8 (TSPAN8) can also contribute to metastasis.

  • Although the tetraspanin CD9 is primarily known as a tumour suppressor, it sometimes has oncogenic and pro-metastatic functions. The association of CD9 with different partner proteins could explain its diverse functions.

  • A few tetraspanins (including CD151, TSPAN8 and CD9) contribute to tumour angiogenesis, presumably by affecting endothelial cell function. However, the contributions of tetraspanins to angiogenesis have not yet been shown using de novo tumour models.

  • Intact and modified CD37-specific monoclonal antibodies have shown considerable promise in the treatment of B cell malignancies. These reagents can kill malignant B cells by inducing antibody-dependent cell-mediated cytotoxicity, by delivering lethal radiation and by inducing apoptosis.

  • CD151-specific monoclonal antibodies have been developed that can strongly inhibit both metastasis and primary tumour growth in human–mouse xenograft models.

  • Other tetraspanins (TSPAN8, CD9 and TSPAN12) may also be worthy cancer targets in particular circumstances.

  • The targeting of CD151 (and perhaps CD9 and CD81) might increase cancer cell sensitivity to several other types of anticancer drugs.

Abstract

An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of typical tetraspanin structure.
Figure 2: CD151 contributions to tumour development.
Figure 3: Strategies for targeting tetraspanin proteins.

Similar content being viewed by others

References

  1. Charrin, S. et al. Lateral organization of membrane proteins: tetraspanins spin their web. Biochem. J. 420, 133–154 (2009).

    CAS  PubMed  Google Scholar 

  2. Hemler, M. E. Tetraspanin functions and associated microdomains. Nature Rev. Mol. Cell. Biol. 6, 801–811 (2005).

    CAS  Google Scholar 

  3. Waterhouse, R., Ha, C. & Dveksler, G. S. Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J. Exp. Med. 195, 277–282 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nature Med. 12, 933–938 (2006).

    CAS  PubMed  Google Scholar 

  5. Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M. & Sanchez-Madrid, F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446 (2009).

    CAS  PubMed  Google Scholar 

  6. Yanez-Mo, M., Gutierrez-Lopez, M. D. & Cabanas, C. Functional interplay between tetraspanins and proteases. Cell. Mol. Life Sci. 68, 3323–3335 (2011).

    CAS  PubMed  Google Scholar 

  7. Stipp, C. S. Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev. Mol. Med. 12, e3 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Tsai, Y. C. & Weissman, A. M. Dissecting the diverse functions of the metastasis suppressor CD82/KAI1. FEBS Lett. 585, 3166–3173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zoller, M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Rev. Cancer 9, 40–55 (2009).

    Google Scholar 

  10. Veenbergen, S. & van Spriel, A. B. Tetraspanins in the immune response against cancer. Immunol. Lett. 138, 129–136 (2011).

    CAS  PubMed  Google Scholar 

  11. Romanska, H. M. & Berditchevski, F. Tetraspanins in human epithelial malignancies. J. Pathol. 223, 4–14 (2011).

    CAS  PubMed  Google Scholar 

  12. Richardson, M. M., Jennings, L. K. & Zhang, X. A. Tetraspanins and tumor progression. Clin. Exp. Metastasis 28, 261–270 (2011).

    CAS  PubMed  Google Scholar 

  13. Sala-Valdes, M., Ailane, N., Greco, C., Rubinstein, E. & Boucheix, C. Targeting tetraspanins in cancer. Expert Opin. Ther. Targets. 16, 985–997 (2012).

    CAS  PubMed  Google Scholar 

  14. Hemler, M. E. Targeting of tetraspanin proteins — potential benefits and strategies. Nature Drug Discov. 7, 747–758 (2008).

    CAS  Google Scholar 

  15. Haeuw, J. F., Goetsch, L., Bailly, C. & Corvaia, N. Tetraspanin CD151 as a target for antibody-based cancer immunotherapy. Biochem. Soc. Trans. 39, 553–558 (2011). This report provides a good overview of CD151-targeting concepts, results and strategies.

    CAS  PubMed  Google Scholar 

  16. Lee, D. et al. Prognostic significance of tetraspanin CD151 in newly diagnosed glioblastomas. J. Surg. Oncol. 107, 646–652 (2013).

    CAS  PubMed  Google Scholar 

  17. Minner, S. et al. Reduced CD151 expression is related to advanced tumour stage in urothelial bladder cancer. Pathology 44, 448–452 (2012).

    CAS  PubMed  Google Scholar 

  18. Mosig, R. A. et al. Application of RNA-Seq transcriptome analysis: CD151 is an Invasion/Migration target in all stages of epithelial ovarian cancer. J. Ovarian. Res. 5, 4 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Devbhandari, R. P. et al. Profiling of the tetraspanin CD151 web and conspiracy of CD151/integrin β1 complex in the progression of hepatocellular carcinoma. PLoS ONE. 6, e24901 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanjmyatav, J. et al. A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. J. Urol. 186, 289–294 (2011).

    CAS  PubMed  Google Scholar 

  21. Voss, M. A. et al. Tetraspanin CD151 is a novel prognostic marker in poor outcome endometrial cancer. Br. J. Cancer 104, 1611–1618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kwon, M. J. et al. Clinical significance of CD151 overexpression in subtypes of invasive breast cancer. Br. J. Cancer 106, 923–930 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, X. H. et al. CD151 accelerates breast cancer by regulating α6 integrin functions, signaling, and molecular organization. Cancer Res. 68, 3204–3213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, Q. et al. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene 32, 1772–1783 (2013). This paper provides the first evidence that CD151 can facilitate tumour initiation, promotion and progression in a de novo cancer model.

    CAS  PubMed  Google Scholar 

  25. Sadej, R. et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol. Cancer Res. 7, 787–798 (2009).

    CAS  PubMed  Google Scholar 

  26. Franco, M. et al. The tetraspanin CD151 is required for Met-dependent signaling and tumor cell growth. J. Biol. Chem. 285, 38756–38764 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zijlstra, A., Lewis, J., Degryse, B., Stuhlmann, H. & Quigley, J. P. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13, 221–234 (2008). This paper shows that a CD151-specific mAb, which probably functions as an adhesion-promoting agonist, prevents tumour cell metastasis in an in vivo xenograft model.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sachs, N., Secades, P., van, H. L., Song, J. Y. & Sonnenberg, A. Reduced susceptibility to two-stage skin carcinogenesis in mice with epidermis-specific deletion of cd151. J. Invest Dermatol. http://dx.doi.org/10.1038/jid.2013.280 (2013). Results from this study confirm that deletion of CD151 in the epidermis is sufficient to impair skin carcinogenesis.

  29. Deng, X. et al. Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia 14, 678–689 (2012). This paper provides evidence that CD151 facilitates tumour initiation, survival and metastasis in a transgenic mouse model of breast cancer.

    PubMed  PubMed Central  Google Scholar 

  30. Abel, E. L., Angel, J. M., Kiguchi, K. & DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nature Protoc. 4, 1350–1362 (2009).

    CAS  Google Scholar 

  31. Sincock, P. M. et al. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J. Cell Sci. 112, 833–844 (1999).

    CAS  PubMed  Google Scholar 

  32. Sterk, L. M. et al. Association of the tetraspanin CD151 with the laminin-binding integrins α3β1, α6β1, α6β4 and α7β1 in cells in culture and in vivo. J. Cell Sci. 115, 1161–1173 (2002).

    CAS  PubMed  Google Scholar 

  33. Kazarov, A. R., Yang, X., Stipp, C. S., Sehgal, B. & Hemler, M. E. An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J. Cell Biol. 158, 1299–1309 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, X. A., Bontrager, A. L. & Hemler, M. E. TM4SF proteins associate with activated PKC and Link PKC to specific β1 integrins. J. Biol. Chem. 276, 25005–25013 (2001).

    CAS  PubMed  Google Scholar 

  35. Germain, E. C., Santos, T. M. & Rabinovitz, I. Phosphorylation of a novel site on the β4 integrin at the trailing edge of migrating cells promotes hemidesmosome disassembly. Mol. Biol. Cell 20, 56–67 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, X. H. et al. CD151 restricts α6 integrin diffusion mode. J. Cell Sci. 125, 1478–1487 (2012). This study unexpectedly discovered that CD151 affects the mode, rather than rate, of integrin diffusion and this provides new insights into the effect of CD151 on the functions of α6 integrin.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan, K. S. et al. Epidermal growth factor receptor-mediated activation of Stat3 during multistage skin carcinogenesis. Cancer Res. 64, 2382–2389 (2004).

    CAS  PubMed  Google Scholar 

  38. Klosek, S. K. et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem. Biophys. Res. Commun. 336, 408–416 (2005).

    CAS  PubMed  Google Scholar 

  39. Klosek, S. K. et al. CD151 regulates HGF-stimulated morphogenesis of human breast cancer cells. Biochem. Biophys. Res. Commun. 379, 1097–1100 (2009).

    CAS  PubMed  Google Scholar 

  40. Frank, D. A. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 251, 199–210 (2007).

    CAS  PubMed  Google Scholar 

  41. Chan, K. S. et al. Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene 27, 1087–1094 (2008).

    CAS  PubMed  Google Scholar 

  42. Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Baleato, R. M., Guthrie, P. L., Gubler, M. C., Ashman, L. K. & Roselli, S. Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am. J. Pathol. 173, 927–937 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ashman, L. K. Renal disease as a potential compounding factor in carcinogenesis experiments with Cd151-null mice. Oncogene 32, 4457 (2013).

    CAS  PubMed  Google Scholar 

  45. Hemler, M. E., Hoff, J., Li, Q. & Yang, X. H. Renal disease appears not to affect carcinogenesis in CD151-null mice. Oncogene 32, 4458 (2013).

    CAS  PubMed  Google Scholar 

  46. Rajasekhar, V. K., Studer, L., Gerald, W., Socci, N. D. & Scher, H. I. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nature Commun. 2, 162 (2011). This paper shows that CD151 is a key marker protein on a minor subset of tumour-initiating stem-like cells in human prostate cancer.

    Google Scholar 

  47. Leccia, F. et al. Cytometric and biochemical characterization of human breast cancer cells reveals heterogeneous myoepithelial phenotypes. Cytometry 81A, 960–972 (2012).

    CAS  Google Scholar 

  48. Lathia, J. D. et al. Integrin α6 regulates glioblastoma stem cells. Cell Stem Cell 6, 421–432 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wewer, U. M., Shaw, L. M., Albrechtsen, R. & Mercurio, A. M. The integrin α6 β1 promotes the survival of metastatic human breast carcinoma cells in mice. Am. J. Pathol. 151, 1191–1198 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, L. et al. Integrin α6high cell population functions as an initiator in tumorigenesis and relapse of human liposarcoma. Mol. Cancer Ther. 10, 2276–2286 (2011).

    CAS  PubMed  Google Scholar 

  51. Ang, J., Lijovic, M., Ashman, L. K., Kan, K. & Frauman, A. G. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol. Biomarkers Prev. 13, 1717–1721 (2004).

    CAS  PubMed  Google Scholar 

  52. Copeland, B. T., Bowman, M. J. & Ashman, L. K. Genetic ablation of the tetraspanin CD151 reduces spontaneous metastatic spread of prostate cancer in the TRAMP model. Mol. Cancer Res. 11, 95–105 (2013). This paper shows that CD151 contributes to spontaneous prostate cancer metastasis in a de novo mouse model.

    CAS  PubMed  Google Scholar 

  53. Moss, M. L., Stoeck, A., Yan, W. & Dempsey, P. J. ADAM10 as a target for anti-cancer therapy. Curr. Pharm. Biotechnol. 9, 2–8 (2008).

    CAS  PubMed  Google Scholar 

  54. Xu, D., Sharma, C. & Hemler, M. E. Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J. 23, 3674–3681 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Haining, E. J. et al. The TspanC8 subgroup of tetraspanins interacts with a disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J. Biol. Chem. 287, 39753–39765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dornier, E. et al. TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J. Cell Biol. 199, 481–496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Knoblich, K. et al. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation. Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-013-1444-8 (2013). This paper provides the first in vivo evidence that TSPAN12 can facilitate primary tumour growth and can inhibit metastasis.

  58. Hori, H., Yano, S., Koufuji, K., Takeda, J. & Shirouzu, K. CD9 expression in gastric cancer and its significance. J. Surg. Res. 117, 208–215 (2004).

    CAS  PubMed  Google Scholar 

  59. Soyuer, S. et al. Prognostic significance of CD9 expression in locally advanced gastric cancer treated with surgery and adjuvant chemoradiotherapy. Pathol. Res. Pract. 206, 607–610 (2010).

    CAS  PubMed  Google Scholar 

  60. Hwang, J. R. et al. Upregulation of CD9 in ovarian cancer is related to the induction of TNF-α gene expression and constitutive NF-κB activation. Carcinogenesis 33, 77–83 (2012).

    CAS  PubMed  Google Scholar 

  61. Yamazaki, H. et al. Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia. Biochem. Biophys. Res. Commun. 409, 14–21 (2011).

    CAS  PubMed  Google Scholar 

  62. Iwasaki, T. et al. Deletion of tetraspanin CD9 diminishes lymphangiogenesis in vivo and in vitro. J. Biol. Chem. 288, 2118–2131 (2013). This paper shows that CD9 facilitates both angiogenesis and lymphagiogenesis in vivo and in vitro.

    CAS  PubMed  Google Scholar 

  63. Copeland, B. T., Bowman, M. J., Boucheix, C. & Ashman, L. K. Knockout of the tetraspanin Cd9 in the TRAMP model of de novo prostate cancer increases spontaneous metastases in an organ specific manner. Int. J. Cancer http://dx.doi.org/10.1002/ijc.28204 (2013). This paper provides the first evidence that CD9 can suppress metastasis in a de novo mouse model of cancer.

  64. Yang, X. H. et al. Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J. Biol. Chem. 281, 12976–12985 (2006).

    CAS  PubMed  Google Scholar 

  65. Chambrion, C. & Le, N. F. The tetraspanins CD9 and CD81 regulate CD9P1-induced effects on cell migration. PLoS ONE. 5, e11219 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Kolesnikova, T. V. et al. Glioblastoma inhibition by cell surface immunoglobulin protein EWI-2, in vitro and in vivo. Neoplasia. 11, 77–86 (2009). This paper provides evidence that EWI2 and EWIF (partner proteins for CD9 and CD81) have opposing effects on cancer cells in vivo and in vitro . This might explain why CD9 (and CD81) could have different functional effects in different types of cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kohno, M., Hasegawa, H., Miyake, M., Yamamoto, T. & Fujita, S. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int. J. Cancer 97, 336–343 (2002).

    CAS  PubMed  Google Scholar 

  68. Sadej, R. et al. Tetraspanin CD151 regulates transforming growth factor β signaling: implication in tumor metastasis. Cancer Res. 70, 6059–6070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Takeda, Y. et al. Diminished metastasis in tetraspanin CD151-knockout mice. Blood 118, 464–472 (2011). This manuscript provides the first evidence that host animal CD151, while most probably functioning at the level of endothelial cells, can promote tumour cell metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Frijns, E., Sachs, N., Kreft, M., Wilhelmsen, K. & Sonnenberg, A. EGF-induced MAPK signaling inhibits hemidesmosome formation through phosphorylation of the integrin β4. J. Biol. Chem. 285, 37650–37662 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, J., Thorne, S. H., Sun, L., Huang, B. & Mochly-Rosen, D. Sustained inhibition of PKCα reduces intravasation and lung seeding during mammary tumor metastasis in an in vivo mouse model. Oncogene 30, 323–333 (2011).

    CAS  PubMed  Google Scholar 

  72. Korpal, M. & Kang, Y. Targeting the transforming growth factor-β signalling pathway in metastatic cancer. Eur. J. Cancer 46, 1232–1240 (2010).

    CAS  PubMed  Google Scholar 

  73. Tsujino, K. et al. Tetraspanin CD151 protects against pulmonary fibrosis by maintaining epithelial integrity. Am. J. Respir. Crit. Care Med. 186, 170–180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barreiro, O. et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 183, 527–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rebhun, R. B. et al. Constitutive expression of the α4 integrin correlates with tumorigenicity and lymph node metastasis of the B16 murine melanoma. Neoplasia. 12, 173–182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hashida, H. et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br. J. Cancer 89, 158–167 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chien, C. W. et al. Regulation of CD151 by hypoxia controls cell adhesion and metastasis in colorectal cancer. Clin. Cancer Res. 14, 8043–8051 (2008).

    CAS  PubMed  Google Scholar 

  78. Lin, P. C., Lin, S. C., Lee, C. T., Lin, Y. J. & Lee, J. C. Dynamic change of tetraspanin CD151 membrane protein expression in colorectal cancer patients. Cancer Invest. 29, 542–547 (2011).

    CAS  PubMed  Google Scholar 

  79. Semenza, G. L. Does loss of CD151 expression promote the metastasis of hypoxic colon cancer cells? Clin. Cancer Res. 14, 7969–7970 (2008).

    CAS  PubMed  Google Scholar 

  80. Varzavand, A. et al. Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization. Clin. Exp. Metastasis 30, 541–552 (2013).

    CAS  PubMed  Google Scholar 

  81. Kanetaka, K. et al. Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J. Hepatol 35, 637–642 (2001).

    CAS  PubMed  Google Scholar 

  82. Berthier-Vergnes, O. et al. Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion. Br. J. Cancer 104, 155–165 (2011).

    CAS  PubMed  Google Scholar 

  83. Gesierich, S. et al. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin. Cancer Res. 11, 2840–2852 (2005).

    CAS  PubMed  Google Scholar 

  84. Claas, C. et al. Association between rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J. Cell Biol. 141, 267–280 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kanetaka, K. et al. Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J. Gastroenterol. Hepatol. 18, 1309–1314 (2003).

    CAS  PubMed  Google Scholar 

  86. Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70, 1668–1678 (2010).

    CAS  PubMed  Google Scholar 

  87. Gesierich, S., Berezovskiy, I., Ryschich, E. & Zoller, M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. 66, 7083–7094 (2006).

    CAS  PubMed  Google Scholar 

  88. Champy, M. F. et al. Reduced body weight in male Tspan8-deficient mice. Int. J. Obes. (Lond.) 35, 605–617 (2011).

    CAS  Google Scholar 

  89. Herlevsen, M., Schmidt, D. S., Miyazaki, K. & Zoller, M. The association of the tetraspanin D6.1A with the α6β4 integrin supports cell motility and liver metastasis formation. J. Cell Sci. 116, 4373–4390 (2003).

    CAS  PubMed  Google Scholar 

  90. Kuhn, S. et al. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol. Cancer Res. 5, 553–567 (2007).

    CAS  PubMed  Google Scholar 

  91. Guo, Q. et al. Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregulating cell-matrix and cell-cell adhesions. PLoS ONE. 7, e38464 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Greco, C. et al. E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res. 70, 7674–7683 (2010).

    CAS  PubMed  Google Scholar 

  93. Winter, M. J. et al. Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp. Cell Res. 285, 50–58 (2003).

    CAS  PubMed  Google Scholar 

  94. Kovalenko, O. V., Yang, X. H. & Hemler, M. E. A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol. Cell Proteom. 6, 1855–1867 (2007).

    CAS  Google Scholar 

  95. Harris, H. J. et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J. Virol. 82, 5007–5020 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Miyake, M., Nakano, K., Itoi, S. I., Koh, T. & Taki, T. Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res. 56, 1244–1249 (1996).

    CAS  PubMed  Google Scholar 

  97. Miyake, M. et al. Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res. 55, 4127–4131 (1995).

    CAS  PubMed  Google Scholar 

  98. Cajot, J. F., Sordat, I., Silvestre, T. & Sordat, B. Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells. Cancer Res. 57, 2593–2597 (1997).

    CAS  PubMed  Google Scholar 

  99. Kusukawa, J., Ryu, F., Kameyama, T. & Mekada, E. Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J. Oral Pathol. Med. 30, 73–79 (2001).

    CAS  PubMed  Google Scholar 

  100. Takeda, T. et al. Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res. 67, 1744–1749 (2007).

    CAS  PubMed  Google Scholar 

  101. Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102 (1996).

    CAS  PubMed  Google Scholar 

  102. Longo, N. et al. Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98, 3717–3726 (2001).

    CAS  PubMed  Google Scholar 

  103. Barreiro, O. et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105, 2852–2861 (2005).

    CAS  PubMed  Google Scholar 

  104. Fan, J., Zhu, G. Z. & Niles, R. M. Expression and function of CD9 in melanoma cells. Mol. Carcinog. 49, 85–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sauer, G. et al. Progression of cervical carcinomas is associated with down-regulation of CD9 but strong local re-expression at sites of transendothelial invasion. Clin. Cancer Res. 9, 6426–6431 (2003).

    CAS  PubMed  Google Scholar 

  106. Stipp, C. S., Kolesnikova, T. V. & Hemler, M. E. EWI-2 is a major CD9 and CD81 partner, and member of a novel Ig protein subfamily. J. Biol. Chem. 276, 40545–40554 (2001).

    CAS  PubMed  Google Scholar 

  107. Charrin, S. et al. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem. J. 373, 409–421 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Charrin, S. et al. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J. Biol. Chem. 276, 14329–14337 (2001).

    CAS  PubMed  Google Scholar 

  109. Stipp, C. S., Orlicky, D. & Hemler, M. E. FPRP: A major, highly stoichiometric, highly specific CD81 and CD9-associated protein. J. Biol. Chem. 276, 4853–4862 (2001).

    CAS  PubMed  Google Scholar 

  110. Le Naour, F. et al. Profiling of the tetraspanin web of human colon cancer cells. Mol. Cell Proteom. 5, 845–857 (2006).

    CAS  Google Scholar 

  111. Iwamoto, R. et al. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J. 13, 2322–2330 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Stipp, C. S., Kolesnikova, T. V. & Hemler, M. E. EWI-2 regulates α3β1 integrin-dependent cell functions on laminin-5. J. Cell Biol. 163, 1167–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Takeda, Y. et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109, 1524–1532 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zuo, H. J. et al. Assessment of myocardial blood perfusion improved by CD151 in a pig myocardial infarction model. Acta Pharmacol. Sin. 30, 70–77 (2009).

    CAS  PubMed  Google Scholar 

  115. Zheng, Z. Z. & Liu, Z. X. CD151 gene delivery increases eNOS activity and induces ECV304 migration, proliferation and tube formation. Acta Pharmacol. Sin. 28, 66–72 (2007).

    CAS  PubMed  Google Scholar 

  116. Zhang, F. et al. Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood 118, 4274–4284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shiojima, I. & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243–1250 (2002).

    CAS  PubMed  Google Scholar 

  118. Somanath, P. R., Razorenova, O. V., Chen, J. & Byzova, T. V. Akt1 in endothelial cell and angiogenesis. Cell Cycle 5, 512–518 (2006).

    CAS  PubMed  Google Scholar 

  119. Zevian, S., Winterwood, N. E. & Stipp, C. S. Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by α3β1 versus α6β4 integrin. J. Biol. Chem. 286, 7496–7506 (2011).

    CAS  PubMed  Google Scholar 

  120. Liu, W. F. et al. Role of tetraspanin CD151-α3/α6 integrin complex: Implication in angiogenesis CD151-integrin complex in angiogenesis. Int. J. Biochem. Cell Biol. 43, 642–650 (2011).

    CAS  PubMed  Google Scholar 

  121. Wright, M. D. et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol. Cell. Biol. 24, 5978–5988 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Cowin, A. J. et al. Wound healing is defective in mice lacking tetraspanin CD151. J. Invest. Dermatol. 126, 680–689 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kamisasanuki, T. et al. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: a novel antiangiogenic therapy. Biochem. Biophys. Res. Commun. 413, 128–135 (2011).

    CAS  PubMed  Google Scholar 

  124. Cady, B. Regional lymph node metastases, a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts. Cancer Treat. Res. 135, 185–201 (2007).

    PubMed  Google Scholar 

  125. Ovalle, S. et al. The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int. J. Cancer 121, 2140–2152 (2007).

    CAS  PubMed  Google Scholar 

  126. Takeda, Y. et al. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J. Cell Biol. 161, 945–956 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Heider, K. H. et al. A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood 118, 4159–4168 (2011). This paper presents results that further advance the case for the clinical development of a CD37-specific mAb for the treatment of B cell malignancies.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao, X. et al. Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110, 2569–2577 (2007). This paper re-introduces the idea (after a hiatus of 15 years) that the targeting of CD37 on B cell malignancies can have significant therapeutic efficacy in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dahle, J. et al. Evaluating antigen targeting and anti-tumor activity of a new anti-CD37 radioimmunoconjugate against non-Hodgkin's lymphoma. Anticancer Res. 33, 85–95 (2013). In this paper, the case is made that the targeting of CD37 with a novel mAb may be superior to the targeting of CD20 with rituximab for the treatment of non-Hodgkin's B cell lymphoma.

    CAS  PubMed  Google Scholar 

  130. Lapalombella, R. et al. Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals. Cancer Cell 21, 694–708 (2012). This paper shows that an agent with both CD37-specific and Fc receptor-binding capacity can trigger opposing intracellular signals that may drive a transformed B cell towards apoptosis or survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Worthington, R. E., Carroll, R. C. & Boucheix, C. Platelet activation by CD9 monoclonal antibodies is mediated by the Fc gamma II receptor. Br. J. Haematol. 74, 216–222 (1990).

    CAS  PubMed  Google Scholar 

  132. Testa, J. E., Brooks, P. C., Lin, J. M. & Quigley, J. P. Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res. 59, 3812–3820 (1999).

    CAS  PubMed  Google Scholar 

  133. Geary, S. M., Cambareri, A. C., Sincock, P. M., Fitter, S. & Ashman, L. K. Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens 58, 141–153 (2001).

    CAS  PubMed  Google Scholar 

  134. Yamada, M. et al. Probing the interaction of tetraspanin CD151 with integrin α3 β1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin α3 β1 complex. Biochem. J. 415, 417–427 (2008).

    CAS  PubMed  Google Scholar 

  135. Karamatic, C. V. et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104, 2217–2223 (2004).

    Google Scholar 

  136. Orlowski, E. et al. A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J. Thromb. Haemost. 7, 2074–2084 (2009).

    CAS  PubMed  Google Scholar 

  137. Serru, V. et al. Selective tetraspan-integrin complexes (CD81/αlpha4β1, CD151/α3β1, CD151/α6β1) under conditions disrupting tetraspan interactions. Biochem. J. 340, 103–111 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nakamoto, T. et al. A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J. Gastroenterol. 44, 889–896 (2009).

    CAS  PubMed  Google Scholar 

  139. Guilmain, W. et al. CD9P-1 expression correlates with the metastatic status of lung cancer, and a truncated form of CD9P-1, GS-168AT2, inhibits in vivo tumour growth. Br. J. Cancer 104, 496–504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Colin, S. et al. A truncated form of CD9-partner 1 (CD9P-1), GS-168AT2, potently inhibits in vivo tumour-induced angiogenesis and tumour growth. Br. J. Cancer 105, 1002–1011 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Junge, H. J. et al. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/β-catenin signaling. Cell 139, 299–311 (2009).

    CAS  PubMed  Google Scholar 

  142. Yang, X. H. et al. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res. 70, 2256–2263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hehlgans, S., Haase, M. & Cordes, N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim. Biophys. Acta 1775, 163–180 (2007).

    CAS  PubMed  Google Scholar 

  144. Lammerding, J., Kazarov, A. R., Huang, H., Lee, R. T. & Hemler, M. E. Tetraspanin CD151 regulates α6β1 integrin adhesion strengthening. Proc. Natl Acad. Sci. USA 100, 7616–7621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Carloni, V., Mazzocca, A., Mello, T., Galli, A. & Capaccioli, S. Cell fusion promotes chemoresistance in metastatic colon carcinoma. Oncogene 32, 2649–2660 (2013).

    CAS  PubMed  Google Scholar 

  146. Kontermann, R. Dual targeting strategies with bispecific antibodies. MAbs. http://dx.doi.org/10.4161/mabs.4.2.19000 (2012).

  147. Avin, E., Haimovich, J. & Hollander, N. Anti-idiotype x anti-CD44 bispecific antibodies inhibit invasion of lymphoid organs by B cell lymphoma. J. Immunol. 173, 4736–4743 (2004).

    CAS  PubMed  Google Scholar 

  148. Ducry, L. & Stump, B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 21, 5–13 (2010).

    CAS  PubMed  Google Scholar 

  149. Zhou, J., Shum, K. T., Burnett, J. C. & Rossi, J. J. Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals 6, 85–107 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhu, G. Z. et al. Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129, 1995–2002 (2002).

    CAS  PubMed  Google Scholar 

  151. Parthasarathy, V. et al. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127, 237–248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Green, L. R. et al. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells. Infect. Immun. 79, 2241–2249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rajesh, S. et al. Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81. J. Virol. 86, 9606–9616 (2012). In this study, a physiologically relevant structure of the CD81 large extracellular loop was obtained using nuclear magnetic resonance analysis. These results should facilitate the design of specific CD81 inhibitors and should provide a valuable precedent for structural studies of other tetraspanin proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Miranti, C. K. Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cell Signal. 21, 196–211 (2009).

    CAS  PubMed  Google Scholar 

  155. Malik, F. A., Sanders, A. J. & Jiang, W. G. KAI-1/CD82, the molecule and clinical implication in cancer and cancer metastasis. Histol. Histopathol. 24, 519–530 (2009).

    CAS  PubMed  Google Scholar 

  156. Xu, C. et al. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J. 23, 3273–3288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Odintsova, E. et al. Metastasis suppressor tetraspanin CD82/KAI1 regulates ubiquitylation of epidermal growth factor receptor. J. Biol. Chem. 288, 26323–26334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Chigita, S. et al. CD82 inhibits canonical Wnt signalling by controlling the cellular distribution of β-catenin in carcinoma cells. Int. J. Oncol. 41, 2021–2028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Abe, M. et al. A novel function of CD82/KAI-1 on E-cadherin-mediated homophilic cellular adhesion of cancer cells. Cancer Lett. 266, 163–170 (2008).

    CAS  PubMed  Google Scholar 

  160. Tsai, Y. C. et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nature Med. 13, 1504–1509 (2007). This paper describes the discovery of specific molecules that are responsible for CD82 degradation and it suggests possible strategies for limiting metastasis by maintaining or restoring CD82 expression.

    CAS  PubMed  Google Scholar 

  161. Risinger, J. I. et al. Normal viability of Kai1/Cd82 deficient mice. Mol. Carcinog. http://dx.doi.org/10.1002/mc.22009 (2013).

  162. Yauch, R. L., Kazarov, A. R., Desai, B., Lee, R. T. & Hemler, M. E. Direct extracellular contact between integrin α3β1 and TM4SF protein CD151. J. Biol. Chem. 275, 9230–9238 (2000).

    CAS  PubMed  Google Scholar 

  163. Fei, Y. et al. CD151 promotes cancer cell metastasis via integrins α3 β1 and α6 β1 in vitro. Mol. Med. Rep. 6, 1226–1230 (2012).

    CAS  PubMed  Google Scholar 

  164. Yang, W. et al. CD151 promotes proliferation and migration of PC3 cells via the formation of CD151-integrin α3/α6 complex. J. Huazhong Univ. Sci. Technolog. Med. Sci. 32, 383–388 (2012).

    CAS  PubMed  Google Scholar 

  165. Baldwin, G. et al. Tetraspanin CD151 regulates glycosylation of α3 β1 integrin. J. Biol. Chem. 283, 35445–35454 (2008).

    CAS  PubMed  Google Scholar 

  166. Winterwood, N. E., Varzavand, A., Meland, M. N., Ashman, L. K. & Stipp, C. S. A critical role for tetraspanin CD151 in α3 β1and α6 β4 integrin-dependent tumor cell functions on laminin-5. Mol. Biol. Cell 17, 2707–2721 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nishiuchi, R. et al. Potentiation of the ligand-binding activity of integrin α3 β1 via association with tetraspanin CD151. Proc. Natl Acad. Sci. USA 102, 1939–1944 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Garcia-Espana, A. et al. Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91, 326–334 (2008).

    CAS  PubMed  Google Scholar 

  169. Min, G., Wang, H., Sun, T. T. & Kong, X. P. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J. Cell Biol. 173, 975–983 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Seigneuret, M. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys. J. 90, 212–227 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kitadokoro, K. et al. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 20, 12–18 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Stipp, C. S., Kolesnikova, T. V. & Hemler, M. E. Functional domains in tetraspanin proteins. Trends Biochem. Sci. 28, 106–112 (2003).

    CAS  PubMed  Google Scholar 

  173. Seigneuret, M., Conjeaud, H., Zhang, H. T. & Kong, X. P. Structural basis for tetraspanin functions in Tetraspanins (eds Berditchevski, F. & Rubinstein, E.) 1–30 (Springer, 2013).

    Google Scholar 

  174. Kovalenko, O. V., Yang, X., Kolesnikova, T. V. & Hemler, M. E. Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem. J. 377, 407–417 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, X. et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell 13, 767–781 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Charrin, S. et al. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 516, 139–144 (2002).

    CAS  PubMed  Google Scholar 

  177. Berditchevski, F., Odintsova, E., Sawada, S. & Gilbert, E. Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signalling. J. Biol. Chem. 277, 36991–37000 (2002).

    CAS  PubMed  Google Scholar 

  178. Israels, S. J. & McMillan-Ward, E. M. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin αIIbβ3 in activated platelets. Thromb. Res. 125, 152–158 (2010).

    CAS  PubMed  Google Scholar 

  179. Delandre, C., Penabaz, T. R., Passarelli, A. L., Chapes, S. K. & Clem, R. J. Mutation of juxtamembrane cysteines in the tetraspanin CD81 affects palmitoylation and alters interaction with other proteins at the cell surface. Exp. Cell Res. 315, 1953–1963 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhu, Y. Z. et al. Significance of palmitoylation of CD81 on its association with tetraspanin-enriched microdomains and mediating hepatitis C virus cell entry. Virology 429, 112–123 (2012).

    CAS  PubMed  Google Scholar 

  181. Latysheva, N. et al. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol. Cell. Biol. 26, 7707–7718 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, H. X., Kolesnikova, T. V., Denison, C., Gygi, S. P. & Hemler, M. E. The C-terminal tail of tetraspanin protein CD9 contributes to its function and molecular organization. J. Cell Sci. 124, 2702–2710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Sharma, C., Yang, X. H. & Hemler, M. E. DHHC2 affects palmitoylation and stability of tetraspanins CD9 and CD151. Mol. Biol. Cell 19, 3415–3425 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Claas, C. et al. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem. J. 389, 99–110 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Meyer-Wentrup, F. et al. Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J. Immunol. 178, 154–162 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by US National Institutes of Health (NIH) grant CA42368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Hemler.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

DMBA–TPA mouse skin chemical carcinogenesis model

A two-stage chemical skin carcinogenesis model that uses a single dose of the genotoxic carcinogen 7,12-dimethyl-benz-[α]anthracene (DMBA) followed by multiple doses of a non-genotoxic tumour promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA).

Intermediate filaments

Deformable eukaryotic cytoskeletal structural proteins (including keratins, vimentin and several others), which have an average diameter of 10 nm.

Hemidesmosome

An organized asymmetrical adhesive structure on the surface of epithelial cells that links the extracellular basement membrane and α6β4 integrin with intracellular plectin and keratin intermediate filaments.

Transgenic adenocarcinoma of mouse prostate model

(TRAMP model). A mouse prostate cancer model in which mice that express SV40 T/t antigens (T/t-ag) that are under the control of the androgen-sensitive rat probasin promoter develop focal adenocarcinomas with 100% frequency between 10 and 20 weeks of age. Metastasis also typically occurs.

Sheddase

A membrane-bound enzyme (for example, a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17) that cleaves extracellular portions of targeted transmembrane proteins and thus causes the release of their soluble ectodomains.

Endothelial cell docking-structures

Cup-like structures that occur on endothelial cells at sites of leukocyte contact.

Rat hindlimb ischaemia model

A model for peripheral arterial disease in which ligation of the rat femoral artery results in ischaemic tissue. This model can be used to test the effectiveness of pro-angiogenic therapy.

Aortic ring assay

An assay in which a transverse section of the aorta is embedded within a three-dimensional matrix such as collagen or Matrigel. After several days, the appearance of branching vessel-like structures provides an assessment of the extent of ex vivo angiogenesis.

Antibody-dependent cell-mediated cytotoxicity

(ADCC). Cell death that occurs when the Fc fragment of a monoclonal antibody (mAb) that is bound to a target cell interacts with the Fc receptor on monocytes, macrophages or natural killer (NK) cells. In turn, these cells kill the target cell or secrete cytokines.

Complement-dependent cytotoxicity

(CDC). Cell death that occurs when a monoclonal antibody that is bound to a target cell is then bound by complement, which triggers the complement cascade and thereby results in the formation of the membrane-attack complex.

Lutetium 177

(177Lu). A radionuclide that has been conjugated to peptides and antibodies and has been used in anticancer therapy.

CD20

A protein that is present on the surface of B cells. Because it is highly expressed on all B cell neoplasms, CD20-specific antibodies (for example, rituximab) have been frequently used as therapeutic agents. Although CD20 contains four transmembrane domains, it is not a member of the tetraspanin family.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemler, M. Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer 14, 49–60 (2014). https://doi.org/10.1038/nrc3640

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3640

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer