Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of cancer pain

Key Points

  • As advances in cancer detection and therapy are extending the life expectancy of cancer patients, there is increasing focus on improving the quality of life of patients. New approaches are desperately needed to control cancer-associated pain.

  • Sensory information from peripheral tissues is transmitted to the spinal cord and brain by primary afferent sensory neurons. Specialized sensory neurons — known as nociceptors — detect and convert environmental stimuli that are perceived as harmful into electrochemical signals that are transmitted to the central nervous system.

  • Tumours secrete a variety of factors that sensitize or directly excite primary afferent neurons, causing the sensation of pain. Receptors for many of these factors are expressed by primary afferent neurons.

  • Both the intracellular and extracellular pH of solid tumours are lower than that of surrounding normal tissues, which can also activate sensory neurons and cause pain in cancer patients.

  • Tumour growth entraps and injures nerves, causing neuropathic pain.

  • The spinal cord and forebrain undergo neurochemical and structural changes as a state of chronic pain develops.

  • Cancer pain frequently becomes more severe as the disease progresses, and might require different types of analgesic at different time points.

  • For the first time, animal models of cancer pain are now available. These will offer insight into one of the main conundrums of cancer pain — why the severity of this pain is so variable from patient to patient, tumour to tumour, and even from site to site.

Abstract

Pain is the most disruptive influence on the quality of life of cancer patients. Although significant advances are being made in cancer treatment and diagnosis, the basic neurobiology of cancer pain is poorly understood. New insights into these mechanisms are now arising from animal models, and have the potential to fundamentally change the way that cancer pain is controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection by sensory neurons of noxious stimuli produced by tumours.
Figure 2: The tumour–nociceptor interface.
Figure 3: Cancer induced reorganization of the central nervous system.

Similar content being viewed by others

References

  1. Mercadante, S. Malignant bone pain: pathophysiology and treatment. Pain 69, 1–18 (1997).Argues, based on the clinical literature, that bone metastases are the most common cause of cancer-related pain. It concludes that cancer pain compromises the patient's quality of life, and that the level of cancer pain is often disproportionate to the size of the tumour.

    CAS  PubMed  Google Scholar 

  2. Mercadante, S. & Arcuri, E. Breakthrough pain in cancer patients: pathophysiology and treatment. Cancer Treat. Rev. 24, 425–432 (1998).

    CAS  PubMed  Google Scholar 

  3. Portenoy, R. K. & Lesage, P. Management of cancer pain. Lancet 353, 1695–1700 (1999).

    CAS  PubMed  Google Scholar 

  4. Portenoy, R. K., Payne, D. & Jacobsen, P. Breakthrough pain: characteristics and impact in patients with cancer pain. Pain 81, 129–134 (1999).

    CAS  PubMed  Google Scholar 

  5. Hoskin, P. in Tumor Bone Diseases and Osteoporosis in Cancer Patients (ed. Body, J.-J.) 263–286 (Marcel Dekker, New York, 2000).

    Google Scholar 

  6. Coyle, N., Adelhardt, J., Foley, K. M. & Portenoy, R. K. Character of terminal illness in the advanced cancer patient: pain and other symptoms during the last four weeks of life. J. Pain Symptom Manage. 5, 83–93 (1990).

    CAS  PubMed  Google Scholar 

  7. Payne, R. Mechanisms and management of bone pain. Cancer 80, 1608–1613 (1997).

    CAS  PubMed  Google Scholar 

  8. Payne, R. et al. Quality of life and cancer pain: satisfaction and side effects with transdermal fentanyl versus oral morphine. J. Clin. Oncol. 16, 1588–1593 (1998).

    CAS  PubMed  Google Scholar 

  9. Meuser, T. et al. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain 93, 247–257 (2001).

    CAS  PubMed  Google Scholar 

  10. de Wit, R. et al. The Amsterdam Pain Management Index compared to eight frequently used outcome measures to evaluate the adequacy of pain treatment in cancer patients with chronic pain. Pain 91, 339–349 (2001).

    CAS  PubMed  Google Scholar 

  11. Schwei, M. J. et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci. 19, 10886–10897 (1999).Describes the first animal model of cancer pain, showing a correlation between tissue-induced tumour destruction, neurochemical changes in sensory neurons and spinal cord, and the development of pain-related behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Honore, P. et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Med. 6, 521–528 (2000).The first paper to use an animal model of cancer pain to test the usefulness of a novel analgesic therapy. The authors show that animal models of cancer pain can be used to examine the mechanism by which new therapies block cancer pain.

    CAS  PubMed  Google Scholar 

  13. Luger, N. M. et al. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res. 61, 4038–4047 (2001).The first paper to examine the mechanisms that generate and maintain chronic pain in advanced stages of cancer. It was the first demonstration that novel therapies might be effective in controlling early- as well as late-stage cancer pain.

    CAS  PubMed  Google Scholar 

  14. Djouhri, L., Bleazard, L. & Lawson, S. N. Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. J. Physiol. 513, 857–872 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Basbaum, A. I. & Jessel, T. M. in Principles of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Jessell, T. M.) 472–490 (McGraw–Hill, New York, 2000).

    Google Scholar 

  16. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).An elegant review of the signal-transduction mechanisms that are used by nociceptors to detect physiological stimuli. It also describes how nociceptor excitability is altered by a variety of intracellular signalling pathways.

    CAS  PubMed  Google Scholar 

  17. Kirschstein, T., Greffrath, W., Busselberg, D. & Treede, R. D. Inhibition of rapid heat responses in nociceptive primary sensory of rats by vanilloid receptor antagonists. J. Neurophysiol. 82, 2853–2860 (1999).

    CAS  PubMed  Google Scholar 

  18. Welch, J. M., Simon, S. A. & Reinhart, P. H. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either or heat. Proc. Natl Acad. Sci. USA 97, 13889–13894 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bevan, S. & Geppetti, P. Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci. 17, 509–512 (1994).

    CAS  PubMed  Google Scholar 

  20. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CAS  PubMed  Google Scholar 

  21. Nagy, I. & Rang, H. Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons. Neuroscience 88, 995–997 (1999).

    CAS  PubMed  Google Scholar 

  22. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing. Neuron 21, 531–543 (1998).

    CAS  PubMed  Google Scholar 

  23. Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001).Shows that DRASIC subunits participate in a heteromultimeric channel and that, depending on the type of sensory neuron that is expressed, DRASIC might be a signal transducer for mechanical stimuli or for low pH.

    CAS  PubMed  Google Scholar 

  24. Krishtal, O. A., Marchenko, S. M. & Obukhov, A. G. Cationic channels activated by extracellular ATP in rat sensory neurons. Neuroscience 27, 995–1000 (1988).

    CAS  PubMed  Google Scholar 

  25. Xu, G. Y. & Huang, L. Y. M. Peripheral inflammation sensitizes P2X receptor-mediated responses in dorsal root ganglion neurons. J. Neurosci. 22, 93–102 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nelson, J. B. & Carducci, M. A. The role of endothelin-1 and endothelin receptor antagonists in prostate cancer. BJU Intern. 85, 45–48 (2000).

    CAS  Google Scholar 

  27. Alvarez, F. J. & Fyffe, R. E. Nociceptors for the 21st century. Curr. Rev. Pain 4, 451–458 (2000).

    CAS  PubMed  Google Scholar 

  28. McMahon, S. B. NGF as a mediator of inflammatory pain. Phil. Trans. R. Soc. Lond. B 351, 431–440 (1996).

    CAS  Google Scholar 

  29. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    CAS  PubMed  Google Scholar 

  30. Schmidt, R. et al. Novel classes of responsive and unresponsive C nociceptors in human skin. J. Neurosci. 15, 333–341 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Honore, P. et al. Cellular and neurochemical remodeling of the spinal cord in bone cancer pain. Prog. Brain Res. 129, 389–397 (2000).

    CAS  PubMed  Google Scholar 

  32. Honore, P., Menning, P. M., Rogers, S. D., Nichols, M. L. & Mantyh, P. W. Neurochemical plasticity in persistent inflammatory pain. Prog. Brain Res. 129, 357–363 (2000).

    CAS  PubMed  Google Scholar 

  33. Mantyh, P. W. et al. Rapid endocytosis of a G protein-coupled receptor: substance P evoked internalization of its receptor in the rat striatum in vivo. Proc. Natl Acad. Sci. USA 92, 2622–2626 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mantyh, P. W. et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268, 1629–1632 (1995).

    CAS  PubMed  Google Scholar 

  35. Hunt, S. P. & Mantyh, P. W. The molecular dynamics of pain control. Nature Rev. Neurosci. 2, 83–91 (2001).Evidence that pain has both discriminative and affective qualities, and that both are regulated in an activity-dependent fashion by ascending and descending modulatory systems.

    CAS  Google Scholar 

  36. Basbaum, A. I. Immediate-early genes and pain: what's all the 'Fos' about? APS J. 3, 49–52 (1994).

    Google Scholar 

  37. Jasmin, L., Wang, H., Tarczy-Hornoch, K., Levine, J. D. & Basbaum, A. I. Differential effects of morphine on noxious stimulus-evoked Fos-like immunoreactivity in subpopulations of spinoparabrachial neurons. J. Neurosci. 14, 7252–7260 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Doyle, C. A. & Hunt, S. P. Substance P receptor (neurokinin-1)-expressing neurons in lamina I of the spinal cord encode for the intensity of noxious stimulation: a c-Fos study in rat. Neuroscience 89, 17–28 (1999).

    CAS  PubMed  Google Scholar 

  39. Hunt, S. P., Pini, A. & Evan, G. Induction of c-Fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).

    CAS  PubMed  Google Scholar 

  40. Abbadie, C., Taylor, B. K., Peterson, M. A. & Basbaum, A. I. Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain 69, 101–110 (1997).

    CAS  PubMed  Google Scholar 

  41. Honore, P. et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98, 585–598 (2000).Establishes that a unique set of neurochemical changes occurs in the central peripheral and central nervous systems in cases of chronic inflammatory, neuropathic and cancer pain. These findings indicate that cancer induces a unique, persistent pain state.

    CAS  PubMed  Google Scholar 

  42. Galasko, C. S. Diagnosis of skeletal metastases and assessment of response to treatment. Clin.Orthop. 312, 64–75 (1995). | PubMed |

    Google Scholar 

  43. Nielsen, O. S., Munro, A. J. & Tannock, I. F. Bone metastases: pathophysiology and management policy. J. Clin. Oncol. 9, 509–24 (1991).

    CAS  PubMed  Google Scholar 

  44. DeLeo, J. A. & Yezierski, R. P. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90, 1–6 (2001).

    CAS  PubMed  Google Scholar 

  45. Watkins, L. R., Maier, S. F. & Goehler, L. E. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63, 289–302 (1995).

    CAS  PubMed  Google Scholar 

  46. Watkins, L. R. & Maier, S. F. Implications of immune-to-brain communication for sickness and pain. Proc. Natl Acad. Sci. USA 96, 7710–7713 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nadler, R. B. et al. IL-1β and TNF-α in prostatic secretions are indicators in the evaluation of men with chronic prostatitis. J. Urol. 164, 214–218 (2000).

    CAS  PubMed  Google Scholar 

  48. Davar, G. Endothelin-1 and metastatic cancer pain. Pain Med. 2, 24–27 (2001).

    CAS  PubMed  Google Scholar 

  49. Opree, A. & Kress, M. Involvement of the proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J. Neurosci. 20, 6289–6293 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Watkins, L. R., Goehler, L. E., Relton, J., Brewer, M. T. & Maier, S. F. Mechanisms of tumor necrosis factor-α (TNF-α) hyperalgesia. Brain Res. 692, 244–250 (1995).

    CAS  PubMed  Google Scholar 

  51. Stoscheck, C. M. & King, L. E. Jr. Role of epidermal growth factor in carcinogenesis. Cancer Res. 46, 1030–1037 (1986).

    CAS  PubMed  Google Scholar 

  52. Poon, R. T., Fan, S. T. & Wong, J. Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 19, 1207–1225 (2001).

    CAS  PubMed  Google Scholar 

  53. Roman, C., Saha, D. & Beauchamp, R. TGF-β and colorectal carcinogenesis. Microsc. Res. Tech. 52, 450–457 (2001).

    CAS  PubMed  Google Scholar 

  54. Silver, B. J. Platelet-derived growth factor in human malignancy. Biofactors 3, 217–227 (1992).

    CAS  PubMed  Google Scholar 

  55. Daughaday, W. H. & Deuel, T. F. Tumor secretion of growth factors. Endocrinol Metab Clin North Am 20, 539–563 (1991).

    CAS  PubMed  Google Scholar 

  56. Radinsky, R. Growth factors and their receptors in metastasis. Semin Cancer Biol 2, 169–177 (1991).

    CAS  PubMed  Google Scholar 

  57. Vasko, M. R. Prostaglandin-induced neuropeptide release from spinal cord. Prog. Brain Res. 104, 367–380 (1995).

    CAS  PubMed  Google Scholar 

  58. Shappell, S. B. et al. Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 3, 287–303 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kundu, N., Yang, Q., Dorsey, R. & Fulton, A. M. Increased cyclooxygenase-2 (Cox-2) expression and activity in a murine model of metastatic breast cancer. Int J Cancer 93, 681–686 (2001).

    CAS  PubMed  Google Scholar 

  60. Ohno, R. et al. Depth of invasion parallels increased cyclooxygenase-2 levels in patients with gastric carcinoma. Cancer 91, 1876–1881 (2001).

    CAS  PubMed  Google Scholar 

  61. Molina, M. A., Sitja-Arnau, M., Lemoine, M. G., Frazier, M. L. & Sinicrope, F. A. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res. 59, 4356–4362 (1999).

    CAS  PubMed  Google Scholar 

  62. Dubois, R. N., Radhika, A., Reddy, B. S. & Entingh, A. J. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology 110, 1259–1262 (1996).

    CAS  PubMed  Google Scholar 

  63. Moore, B. C. & Simmons, D. L. COX-2 inhibition, apoptosis, and chemoprevention by nonsteroidal anti-inflammatory drugs. Curr. Med. Chem. 7, 1131–1144 (2000).

    CAS  PubMed  Google Scholar 

  64. Masferrer, J. L. et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60, 1306–1311 (2000).

    CAS  PubMed  Google Scholar 

  65. Fosslien, E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit. Rev. Clin. Lab. Sci. 37, 431–502 (2000).

    CAS  PubMed  Google Scholar 

  66. Mercadante, S. The use of anti-inflammatory drugs in cancer pain. Cancer Treat. Rev. 27, 51–61 (2001).

    CAS  PubMed  Google Scholar 

  67. Shankar, A. et al. Raised endothelin 1 levels in patients with colorectal liver metastases. Br. J. Surg. 85, 502–506 (1998).

    CAS  PubMed  Google Scholar 

  68. Kurbel, S. et al. Endothelin-secreting tumors and the idea of the pseudoectopic hormone secretion in tumors. Med. Hypotheses 52, 329–333 (1999).

    CAS  PubMed  Google Scholar 

  69. Nelson, J. B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med. 1, 944–949 (1995).

    CAS  PubMed  Google Scholar 

  70. Pomonis, J. D., Rogers, S. D., Peters, C. M., Ghilardhi, J. R. & Mantyh, P. W. Expression and localization of endothelin receptors: implication for the involvement of peripheral glia in nociception. J. Neurosci. 21, 999–1006 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Davar, G., Hans, G., Fareed, M. U., Sinnott, C. & Strichartz, G. Behavioral signs of acute pain produced by application of endothelin-1 to rat sciatic nerve. Neuroreport 9, 2279–2283 (1998).

    CAS  PubMed  Google Scholar 

  72. Dawas, K., Laizidou, M., Shankar, A., Ali, H. & Taylor, I. Angiogenesis in cancer: the role of endothelin-1. Ann. R. Coll. Surg. Engl. 81, 306–310 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Asham, E. H., Loizidou, M. & Taylor, I. Endothelin-1 and tumour development. Eur. J. Surg. Oncol. 24, 57–60 (1998).

    CAS  PubMed  Google Scholar 

  74. Griffiths, J. R. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Reeh, P. W. & Steen, K. H. Tissue acidosis in nociception and pain. Prog. Brain Res. 113, 143–151 (1996).

    CAS  PubMed  Google Scholar 

  76. Sutherland, S., Cook, S. & Ew, M. Chemical mediators of pain due to tissue damage and ischemia. Prog. Brain Res. 129, 21–38 (2000).

    CAS  PubMed  Google Scholar 

  77. Olson, T. H., Riedl, M. S., Vulchanova, L., Ortiz-Gonzalez, X. R. & Elde, R. An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats. Neuroreport 9, 1109–1113 (1998).

    CAS  PubMed  Google Scholar 

  78. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain. Nature 389, 816–824 (1997).

    CAS  PubMed  Google Scholar 

  79. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).A seminal paper showing that protons decrease the temperature threshold for VR1 activation, so that even moderately acidic conditions activate VR1 at room temperature. This paper established VR1 as a molecular integrator of noxious chemical and physical stimuli in nociceptors.

    CAS  PubMed  Google Scholar 

  80. Bassilana, F. et al. The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties. J. Biol. Chem. 272, 28819–28822 (1997).

    CAS  PubMed  Google Scholar 

  81. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997).

    CAS  PubMed  Google Scholar 

  82. Clohisy, D. R., Perkins, S. L. & Ramnaraine, M. L. Review of cellular mechanisms of tumor osteolysis. Clin. Orthop. 373,104–114 (2000).

    Google Scholar 

  83. Clohisy, D. R. et al. Osteoprotegerin inhibits tumor-induced osteoclastogenesis and bone growth in osteopetrotic mice. J Orthop Res 18, 967–976 (2000).

    CAS  PubMed  Google Scholar 

  84. Clohisy, D. R., O'Keefe, P. F. & Ramnaraine, M. L. Pamidronate decreases tumor-induced osteoclastogenesis in mice. J. Orthop. Res. 19, 554–558 (2001).

    CAS  PubMed  Google Scholar 

  85. Delaisse, J.-M. & Vaes, G. in Biology and Physiology of the Osteoclast (eds Rifkin, B. R. & Gay, C. V.) 289–314 (CRC Press, Ann Arbor, 1992).

    Google Scholar 

  86. Guo, A., Vulchanova, L., Wang, J., Li, X. & Elde, R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur. J. Neurosci. 11, 946–958 (1999).

    CAS  PubMed  Google Scholar 

  87. Berenson, J. R. et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 91, 1191–1200 (2001).

    CAS  PubMed  Google Scholar 

  88. Fulfaro, F., Casuccio, A., Ticozzi, C. & Ripamonti, C. The role of bisphosphonates in the treatment of painful metastatic bone disease: a review of phase III trials. Pain 78, 157–169 (1998).

    CAS  PubMed  Google Scholar 

  89. Major, P. P., Lipton, A., Berenson, J. & Hortobagyi, G. Oral bisphosphonates: a review of clinical use in patients with bone metastases. Cancer 88, 6–14 (2000).

    CAS  PubMed  Google Scholar 

  90. Rogers, M. J. et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88, 2961–2978 (2000).

    CAS  PubMed  Google Scholar 

  91. Gatti, D. & Adami, S. New bisphosphonates in the treatment of bone diseases. Drugs Aging 15, 285–296 (1999).

    CAS  PubMed  Google Scholar 

  92. Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    CAS  PubMed  Google Scholar 

  93. Hiraga, T., Williams, P. J., Mundy, G. R. & Yoneda, T. The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res. 61, 4418–4424 (2001).

    CAS  PubMed  Google Scholar 

  94. Yoneda, T. et al. Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88, 2979–2988 (2000).

    CAS  PubMed  Google Scholar 

  95. Sasaki, A. et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res. 55, 3551–3557 (1995).

    CAS  PubMed  Google Scholar 

  96. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    CAS  PubMed  Google Scholar 

  97. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    CAS  PubMed  Google Scholar 

  98. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hsu, H. L. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540–3545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bekker, P. J. et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J. Bone Miner. Res. 16, 348–360 (2001).

    CAS  PubMed  Google Scholar 

  101. Terada, T. & Matsunaga, Y. S-100-positive nerve fibers in hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an immunohistochemical study. Pathol. Int. 51, 89–93 (2001).

    CAS  PubMed  Google Scholar 

  102. O'Connell, J. X., Nanthakumar, S. S., Nielsen, G. P. & Rosenberg, A. E. Osteoid osteoma: the uniquely innervated bone tumor. Mod Pathol 11, 175–180 (1998).

    CAS  PubMed  Google Scholar 

  103. Seifert, P. & Spitznas, M. Tumours may be innervated. Virchows Archiv. 438, 228–231 (2001).

    CAS  PubMed  Google Scholar 

  104. Ripamonti, C. & Dickerson, E. D. Strategies for the treatment of cancer pain in the new millennium. Drugs 61, 955–977 (2001).

    CAS  PubMed  Google Scholar 

  105. Lipton, R. B. et al. Taxol produces a predominantly sensory neuropathy. Neurology 39, 368–373 (1989).

    CAS  PubMed  Google Scholar 

  106. Polomano, R. C., Mannes, A. J., Clark, U. S. & Bennett, G. J. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94, 293–304 (2001).

    CAS  PubMed  Google Scholar 

  107. Polomano, R. C. & Bennett, G. J. Chemotherapy-evoked painful peripheral neuropathy. Pain Med. 2, 8–14 (2001).

    CAS  PubMed  Google Scholar 

  108. Fukamachi, S. et al. Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia. Brain Res. Dev. Brain Res. 132, 131–139 (2001).

    CAS  PubMed  Google Scholar 

  109. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    CAS  PubMed  Google Scholar 

  110. Laughlin, T. M. et al. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors. Pain 72, 253–260 (1997).

    CAS  PubMed  Google Scholar 

  111. Vanderah, T. W. et al. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 68, 275–281 (1996).

    CAS  PubMed  Google Scholar 

  112. Vanderah, T. W., Ossipov, M. H., Lai, J., Malan, T. P. & Porreca, F. Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin. Pain 92, 5–9 (2001).

    CAS  PubMed  Google Scholar 

  113. Kajander, K. C., Sahara, Y., Iadarola, M. J. & Bennett, G. J. Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides 11, 719–728 (1990).

    CAS  PubMed  Google Scholar 

  114. Noguchi, K. et al. Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Brain Res. Mol. Brain Res. 10, 227–233 (1991).

    CAS  PubMed  Google Scholar 

  115. Dubner, R. & Ruda, M. A. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci. 15, 96–103 (1992).

    CAS  PubMed  Google Scholar 

  116. Iadarola, M. J., Douglass, J., Civelli, O. & Naranjo, J. R. Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res. 455, 205–212 (1988).

    CAS  PubMed  Google Scholar 

  117. Imbe, H. & Ren, K. The up-regulation of preprodynorphin mRNA in trigeminoparabrachial neurons after inflammation. Neuroreport 11, 845–847 (2000).

    CAS  PubMed  Google Scholar 

  118. MacArthur, L., Ren, K., Pfaffenroth, E., Franklin, E. & Ruda, M. A. Descending modulation of opioid-containing nociceptive neurons in rats with peripheral inflammation and hyperalgesia. Neuroscience 88, 499–506 (1999).

    CAS  PubMed  Google Scholar 

  119. Nauta, H. J. W. et al. Punctate midline myelotomy for the relief of visceral cancer pain. J. Neurosurg. 92, 125–130 (2000).Clinical study showing that multiple pathways might be involved in the ascending conduction of visceral cancer pain — one reason that cancer pain can be difficult to fully control.

    CAS  PubMed  Google Scholar 

  120. Willis, W. D., Al-Chaer, E. D., Quast, M. J. & Westlund, K. N. A visceral pain pathway in the dorsal column of the spinal cord. Proc. Natl Acad. Sci. USA 96, 7675–7679 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lembeck, F. & Gamse, R. Substance P in peripheral sensory processes. Ciba Found. Symp. 91, 35–54 (1982).

    CAS  Google Scholar 

  122. Fields, H. Pain (McGraw–Hill, New York, 1987).

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. Sabino and D. Mach for their invaluable comments and suggestions, and the National Institute of Neurological Disorders and Stroke, the National Institute of Drug Abuse, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, and the Veterans Administration for their support of research into the mechanisms that generate cancer pain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Mantyh.

Related links

Related links

DATABASES

CancerNet:

bone cancer

prostate cancer

 LocusLink:

ASIC3

COX1

COX2

endothelin-1

endothelin-2

endothelin-3

epidermal growth factor

c-Fos

interleukin-1

interleukin-6

nerve growth factor

neurokinin-1 receptor

OPG

OPGL

P2X3

platelet-derived growth factor

RANK

TNFR

TNF-α

transforming growth factor-β

tubulin

VR1

 Medscape DrugInfo:

aspirin

gabapentin

ibuprofen

paclitaxel

vincristine

FURTHER INFORMATION

American Alliance of Cancer Pain Initiatives

American Cancer Society

American Pain Foundation

American Pain Society

Evidence-Based Health Care, Oxford

International Association for the Study of Pain (IASP)

National Cancer Institute

National Institute of Drug Abuse

National Institute of Neurological Disorders and Stroke

Neurosystems Laboratory

NIH Clinical Trials Listing

Society for Neuroscience

University of Minnesota Cancer Center

Glossary

PRIMARY AFFERENT SENSORY NEURON

A neuron that has a cell body located in the dorsal root ganglion and has one axon that innervates peripheral tissue and one axon that projects to the spinal cord or the brainstem. Humans have 2–3 million primary afferent sensory neurons, which innervate almost every organ of the body.

TRIGEMINAL GANGLIA

The ganglia that house the cell bodies of primary afferent neurons that innervate the head and neck.

DORSAL ROOT GANGLION

The cell bodies of sensory neurons are collected together in paired ganglia that lie alongside the dorsal spinal cord. These sensory-neuron cell bodies are surrounded by satellite glial cells.

NOCICEPTOR

A primary afferent sensory neuron that is activated by tissue-damage-related stimuli.

PURINERGIC RECEPTORS

A family of cell-surface receptors that are activated by ATP and other nucleotides that mediate a broad spectrum of physiological responses, including activation of nociceptors.

ENDOTHELINS

A family of three peptides that are released from endothelial cells and some tumour cells. These peptides can activate nociceptors, mount an inflammatory response, and stimulate angiogenesis and growth of tumour cells.

PROSTAGLANDINS

Pro-inflammatory lipids that are formed from arachidonic acid by the action of cyclooxygenase enzymes and other downstream synthetases.

BRADYKININ

A peptide that, when applied to primary afferent sensory nerve terminals, produces pain and sensitization of the sensory neuron to other noxious and non-noxious stimuli.

PERIPHERAL SENSITIZATION

An altered state of nociceptor function that is characterized by a lowered threshold of activation and an increased response to suprathreshold stimuli.

HYPERALGESIA

An increased response to a stimulus that is normally painful.

ALLODYNIA

Pain caused by a stimulus that does not normally provoke pain.

ASTROCYTES

The most numerous type of glial cell in the central nervous system. Astrocytes regulate the extracellular neuronal environment.

CENTRAL SENSITIZATION

An increased responsiveness of pain transmission to neurons in the spinal cord — usually caused by neurochemical changes in the spinal cord, brainstem or forebrain.

SPINOTHALAMIC TRACT NEURONS

A small group of neurons that are located in the dorsal horn of the spinal cord and are involved in the ascending conduction of pain and temperature.

AMYGDALA

An area of the forebrain that is involved in the formation of emotional memories, and the generation of fear, anxiety and stress that occurs in response to noxious stimuli.

PERIOSTEUM

The thin, highly innervated, fibrous tissue sheath that covers the outside of mineralized bone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantyh, P., Clohisy, D., Koltzenburg, M. et al. Molecular mechanisms of cancer pain. Nat Rev Cancer 2, 201–209 (2002). https://doi.org/10.1038/nrc747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing