Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology of arrhythmogenic cardiomyopathy

Abstract

Arrhythmogenic cardiomyopathy (AC) is a clinically and genetically heterogeneous disorder of heart muscle that is associated with ventricular arrhythmias and risk of sudden cardiac death, particularly in the young and athletes. Mutations in five genes that encode major components of the desmosomes, namely junction plakoglobin, desmoplakin, plakophilin-2, desmoglein-2, and desmocollin-2, have been identified in approximately half of affected probands. AC is, therefore, commonly considered a 'desmosomal' disease. No single test is sufficiently specific to establish a diagnosis of AC. The diagnostic criteria for AC were revised in 2010 to improve sensitivity, but maintain specificity. Quantitative parameters were introduced and identification of a pathogenic mutation in a first-degree relative has become a major diagnostic criterion. Caution in the interpretation of screening results is highly recommended because a 'pathogenic' mutation is difficult to define. Experimental data confirm that this genetically determined cardiomyopathy develops after birth because of progressive myocardial dystrophy, and is initiated by cardiomyocyte necrosis; cellular and animal models are necessary to gain insight into the cascade of underlying molecular events. Crosstalk from the desmosome to the nucleus, gap junctions, and ion channels is under investigation, to move from symptomatic to targeted therapy, with the ultimate aim to stop disease onset and progression.

Key Points

  • Arrhythmogenic cardiomyopathy (AC) is a familial heart-muscle disease that is usually inherited with an autosomal-dominant pattern; mutations in desmosomal-protein genes are found in approximately 50% of probands

  • The 1994 diagnostic criteria were updated in 2010 to increase their sensitivity, but maintain their specificity; differential diagnosis with AC 'phenocopies' is mandatory when dealing with sporadic forms of AC

  • Emerging tools offer the possibility to visualize the fibrofatty scar, as either low-voltage myocardial areas using electroanatomical mapping, or areas of delayed contrast-enhancement with cardiac MRI

  • Genotype–phenotype studies show that the clinicomorphological spectrum of AC is wider than originally thought, and includes variants with predominant or even isolated left ventricular involvement within a single family

  • Animal and cellular models indicate that both abnormal biomechanical properties and crosstalk from the desmosome to the nucleus, gap junctions, and ion channels are implicated in the pathobiology of AC

  • Electrical instability is the main clinical manifestation of AC; in addition to re-entry arrhythmias caused by fibrofatty replacement, current hypotheses implicate acute cell death, gap-junction remodeling, and ion-channel crosstalk

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The progression of the AC phenotype.
Figure 2: Hypothesized intracellular desmosome crosstalk.

Similar content being viewed by others

References

  1. Online Medical Inheritance in Man®. 107970 Arrhythmogenic right ventricular dysplasia, familial, 1; ARVD1 [online], (2009).

  2. Basso, C., Corrado, D., Marcus, F. I., Nava, A. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 373, 1289–1300 (2009).

    PubMed  Google Scholar 

  3. Thiene, G., Nava, A., Corrado, D., Rossi, L. & Pennelli, N. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 318, 129–133 (1988).

    CAS  PubMed  Google Scholar 

  4. Corrado, D., Thiene, G., Nava, A., Pennelli, N. & Rossi, L. Sudden death in young competitive athletes: clinico-pathologic correlations in 22 cases. Am. J. Med. 89, 588–596 (1990).

    CAS  PubMed  Google Scholar 

  5. Awad, M. M., Calkins, H. & Judge D. P. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med. 5, 258–267 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Basso, C. et al. Arrhythmogenic right ventricular cardiomyopathy: dysplasia, dystrophy or myocarditis? Circulation 94, 983–991 (1996).

    CAS  PubMed  Google Scholar 

  7. Basso, C., Corrado, D. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy: what's in a name? From a congenital defect (dysplasia) to a genetically determined cardiomyopathy (dystrophy). Am. J. Cardiol. 106, 275–277 (2010).

    PubMed  Google Scholar 

  8. Frank, R. et al. Electrocardiology of 4 cases of right ventricular dysplasia inducing arrhythmia. Arch. Mal. Coeur Vaiss. 71, 963–972 (1978).

    CAS  PubMed  Google Scholar 

  9. Marcus, F. et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation 65, 384–398 (1982).

    CAS  PubMed  Google Scholar 

  10. Uhl, H. S. A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull. Johns Hopkins Hosp. 91, 197–209 (1952).

    CAS  PubMed  Google Scholar 

  11. McKenna, W. J. et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br. Heart J. 71, 215–218 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Richardson, P. et al. Report of the World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 93, 841–842 (1996).

    CAS  PubMed  Google Scholar 

  13. Gallo P, d'Amati, G. & Pelliccia, F. Pathologic evidence of extensive left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy. Hum. Pathol. 23, 948–952 (1992).

    CAS  PubMed  Google Scholar 

  14. Michalodimitrakis, M., Papadomanolakis, A., Stiakakis, J. & Kanaki, K. Left side right ventricular cardiomyopathy. Med. Sci. Law 42, 313–317 (2002).

    CAS  PubMed  Google Scholar 

  15. Nava, A., Rossi, L. & Thiene, G. (Eds) Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (Elsevier, Amsterdam, 1997).

    Google Scholar 

  16. Marcus, F., Nava, A. & Thiene, G. (Eds) Arrhythmogenic RV Cardiomyopathy/Dysplasia: Recent Advances (Springer–Verlag, Milan, 2007).

    Google Scholar 

  17. Corrado, D., Basso, C., Thiene, G. Arrhythmogenic Cardiomyopathy, An Issue of Cardiac Electrophysiology Clinics (Elsevier, New York, 2011).

    Google Scholar 

  18. Corrado, D., Basso, C., Pilichou, K. & Thiene, G. Molecular biology and clinical management of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart 97, 530–539 (2011).

    CAS  PubMed  Google Scholar 

  19. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur. Heart J. 31, 806–814 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Asimaki, A. et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 360, 1075–1084 (2009).

    CAS  PubMed  Google Scholar 

  21. Asimaki, A. et al. Altered desmosomal proteins in granulomatous myocarditis and potential pathogenic links to arrhythmogenic right ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 4, 743–752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tandri, H. et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 98–103 (2005).

    PubMed  Google Scholar 

  23. Sen-Chowdhry, S. et al. Cardiovascular magnetic resonance in arrhythmogenic right ventricular cardiomyopathy revisited: comparison with task force criteria and genotype. J. Am. Coll. Cardiol. 48, 2132–2140 (2006).

    PubMed  Google Scholar 

  24. Sen-Chowdhry, S. et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J. Am. Coll. Cardiol. 52, 2175–2187 (2008).

    PubMed  Google Scholar 

  25. Sen-Chowdhry, S. et al. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115, 1710–1720 (2007).

    PubMed  Google Scholar 

  26. Corrado, D. et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 111, 3042–3050 (2005).

    PubMed  Google Scholar 

  27. Corrado, D. et al. Three-dimensional electroanatomical voltage mapping and histologic evaluation of myocardial substrate in right ventricular outflow tract tachycardia. J. Am. Coll. Cardiol. 51, 731–739 (2008).

    PubMed  Google Scholar 

  28. Garcia, F. C., Bazan, V., Zado, E. S., Ren, J. F. & Marchlinski, F. E. Epicardial substrate and outcome with epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 120, 366–375 (2009).

    PubMed  Google Scholar 

  29. Bauce, B. et al. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur. Heart J. 26, 1666–1675 (2005).

    CAS  PubMed  Google Scholar 

  30. Corrado, D. et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol. 30, 1512–1520 (1997).

    CAS  PubMed  Google Scholar 

  31. Nava, A. et al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J. Am. Coll. Cardiol. 12, 1222–1228 (1988).

    CAS  PubMed  Google Scholar 

  32. McKoy, G. et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355, 2119–2124 (2000).

    CAS  PubMed  Google Scholar 

  33. Rampazzo, A. et al. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. Hum. Mol. Genet. 3, 959–962 (1994).

    CAS  PubMed  Google Scholar 

  34. Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    CAS  PubMed  Google Scholar 

  35. Protonotarios, N. & Tsatsopoulou, A. Naxos disease and Carvajal syndrome: cardiocutaneous disorders that highlight the pathogenesis and broaden the spectrum of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc. Pathol. 13, 185–194 (2004).

    CAS  PubMed  Google Scholar 

  36. Kaplan, S. R. et al. Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc. Pathol. 13, 26–32 (2004).

    CAS  PubMed  Google Scholar 

  37. Rampazzo, A. et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 71, 1200–1206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nava, A. et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 36, 2226–2233 (2000).

    CAS  PubMed  Google Scholar 

  39. Gerull, B. et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 36, 1162–1164 (2004).

    CAS  PubMed  Google Scholar 

  40. Pilichou, K. et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113, 1171–1179 (2006).

    CAS  PubMed  Google Scholar 

  41. Syrris, P. et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am. J. Hum. Genet. 79, 978–984 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Asimaki, A. et al. A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 81, 964–973 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Awad, M. M. et al. Recessive arrhythmogenic right ventricular dysplasia due to novel cryptic splice mutation in PKP2. Hum. Mutat. 27, 1157 (2006).

    PubMed  PubMed Central  Google Scholar 

  44. Simpson, M. A. et al. Homozygous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild palmoplantar keratoderma and woolly hair. Cardiology 113, 28–34 (2009).

    CAS  PubMed  Google Scholar 

  45. Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

    CAS  PubMed  Google Scholar 

  46. Beffagna, G. et al. Regulatory mutations in transforming growth factor-β3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res. 65, 366–373 (2005).

    CAS  PubMed  Google Scholar 

  47. Merner, N. D. et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am. J. Hum. Genet. 82, 1–13 (2008).

    Google Scholar 

  48. van Tintelen, J. P. et al. Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 6, 1574–1583 (2009).

    PubMed  Google Scholar 

  49. Taylor, M. et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 124, 876–885 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. Protonotarios, N. et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia on the basis of the revised diagnostic criteria in affected families with desmosomal mutations. Eur. Heart J. 32, 1097–1104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Quarta, G. et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation 123, 1201–1209 (2011).

    Google Scholar 

  52. den Haan, A. D. et al. Comprehensive desmosome mutation analysis in North Americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Cardiovasc. Genet. 2, 428–435 (2009).

    CAS  PubMed  Google Scholar 

  53. Cox, M. G. et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: pathogenic desmosome mutations in index-patients predict outcome of family screening: Dutch arrhythmogenic right ventricular dysplasia/cardiomyopathy genotype–phenotype follow-up study. Circulation 123, 2690–2700 (2011).

    PubMed  Google Scholar 

  54. Bauce, B. et al. Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 7, 22–29 (2010).

    PubMed  Google Scholar 

  55. Xu, T. et al. Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 55, 587–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kapplinger, J. D. et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J. Am. Coll. Cardiol. 57, 2317–2327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Charron, P. et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 31, 2715–2726 (2010).

    PubMed  Google Scholar 

  58. Delmar, M. & McKenna, W. J. The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ. Res. 107, 700–714 (2010).

    CAS  PubMed  Google Scholar 

  59. Franke, W. W., Borrmann, C. M., Grund, C. & Pieperhoff, S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur. J. Cell. Biol. 85, 69–82 (2006).

    CAS  PubMed  Google Scholar 

  60. Mallat, Z. et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N. Engl. J. Med. 335, 1190–1196 (1996).

    CAS  PubMed  Google Scholar 

  61. Valente, M. et al. In vivo evidence of apoptosis in arrhythmogenic right ventricular cardiomyopathy. Am. J. Pathol. 152, 479–484 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pilichou, K. et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J. Exp. Med. 206, 1787–1802 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, J. et al. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling. Mol. Cell. Biol. 31, 1134–1144 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Yang, Z. et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Res. 99, 646–655 (2006).

    CAS  PubMed  Google Scholar 

  65. Basso, C. et al. Ultrastructural evidence of intercalated disc remodelling in arrhythmogenic right ventricular cardiomyopathy: an electron microscopy investigation on endomyocardial biopsies. Eur. Heart J. 27, 1847–1854 (2006).

    PubMed  Google Scholar 

  66. Garcia-Gras, E. et al. Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest. 116, 2012–2021 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, D. et al. Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Hum. Mol. Genet. 20, 4582–4596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Krusche, C. A. et al. Desmoglein 2 mutant mice develop cardiac fibrosis and dilation. Basic Res. Cardiol. 106, 617–633 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaplan, S. R. et al. Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm 1, 3–11 (2004).

    PubMed  Google Scholar 

  70. Sato, P. Y. et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 105, 523–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sato, P. Y. et al. Interactions between ankyrin-G., plakophilin-2, and connexin 43 at the cardiac intercalated disc. Circ. Res. 109, 193–201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Thiene, G. et al. Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur. Heart J. 12, 22–25 (1991).

    PubMed  Google Scholar 

  73. Calabrese, F., Basso, C., Carturan, E., Valente, M. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: is there a role for viruses? Cardiovasc. Pathol. 15, 11–17 (2006).

    PubMed  Google Scholar 

  74. Bowles, N. E., Ni, J., Marcus, F. & Towbin, J. A. The detection of cardiotropic viruses in the myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol. 39, 892–895 (2002).

    PubMed  Google Scholar 

  75. Bonny, A. et al. C-reactive protein in arrhythmogenic right ventricular dysplasia/cardiomyopathy and relationship with ventricular tachycardia. Cardiol. Res. Pract. 2010, 919783 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Campian, M. E. et al. Assessment of inflammation in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur. J. Nucl. Med. Mol. Imaging 37, 2079–2085 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. d'Amati, G., di Gioia, C. R., Giordano, C. & Gallo, P. Myocyte transdifferentiation: a possible pathogenetic mechanism for arrhythmogenic right ventricular cardiomyopathy. Arch. Pathol. Lab. Med. 124, 287–290 (2000).

    CAS  PubMed  Google Scholar 

  78. Lombardi, R. et al. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 104, 1076–1084 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gittenberger-de Groot, A. C., Winter, E. M. & Poelmann, R. E. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J. Cell. Mol. Med. 14, 1056–1060 (2010).

    PubMed  Google Scholar 

  80. Liang, W. C. et al. TMEM43 mutations in Emery–Dreifuss muscular dystrophy-related myopathy. Ann. Neurol. 69, 1005–1013 (2011).

    CAS  PubMed  Google Scholar 

  81. Sen-Chowdhry, S. et al. Mutational heterogeneity, modifier genes, and environmental influences contribute to phenotypic diversity of arrhythmogenic cardiomyopathy. Circ. Cardiovasc. Genet. 3, 323–330 (2010).

    PubMed  Google Scholar 

  82. Bauce, B. et al. Comparison of clinical features of arrhythmogenic right ventricular cardiomyopathy in men versus women. Am. J. Cardiol. 102, 1252–1257 (2008).

    PubMed  Google Scholar 

  83. Pelzer, T. et al. 17β-Estradiol prevents programmed cell death in cardiac myocytes. Biochem. Biophys. Res. Commun. 268, 192–200 (2000).

    CAS  PubMed  Google Scholar 

  84. Wlodarska, E. K. et al. Arrhythmogenic right ventricular cardiomyopathy in two pairs of monozygotic twins. Int. J. Cardiol. 105, 126–133 (2005).

    PubMed  Google Scholar 

  85. Gonzalez-Juanatey, C., Testa, A. & Armesto, V. Identical twins with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Clin. Cardiol. 30, 529–530 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pilichou, K., Bezzina, C. R., Thiene, G. & Basso, C. Arrhythmogenic cardiomyopathy: transgenic animal models provide novel insights into disease pathobiology. Circ. Cardiovasc. Genet. 4, 318–326 (2011).

    PubMed  Google Scholar 

  87. Kirchhof, P. et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 114, 1799–1806 (2006).

    PubMed  Google Scholar 

  88. Corrado, D., Basso, C., Rizzoli, G., Schiavon, M. & Thiene, G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 42, 1959–1963 (2003).

    PubMed  Google Scholar 

  89. Fabritz, L. et al. Load-reducing therapy prevents development of arrhythmogenic right ventricular cardiomyopathy in plakoglobin-deficient mice. J. Am. Coll. Cardiol. 57, 740–750 (2011).

    CAS  PubMed  Google Scholar 

  90. Corrado, D. et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296, 1593–1601 (2006).

    CAS  PubMed  Google Scholar 

  91. Pelliccia, A. et al. Outcomes in athletes with marked ECG repolarization abnormalities. N. Engl. J. Med. 358, 152–161 (2008).

    CAS  PubMed  Google Scholar 

  92. Wichter, T., Borggrefe, M., Haverkamp, W., Chen, X. & Breithardt, G. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease. Results in patients with inducible and noninducible ventricular tachycardia. Circulation 86, 29–37 (1992).

    CAS  PubMed  Google Scholar 

  93. Wichter, T. et al. Arrhythmogenic right ventricular cardiomyopathy. Antiarrhythmic drugs, catheter ablation, or ICD? Herz 30, 91–101 (2005).

    PubMed  Google Scholar 

  94. Marchlinski, F. E. et al. Electroanatomic substrate and outcome of catheter ablative therapy for ventricular tachycardia in setting of right ventricular cardiomyopathy. Circulation 110, 2293–2298 (2004).

    PubMed  Google Scholar 

  95. Dalal, D. et al. Long-term efficacy of catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol. 50, 432–440 (2007).

    PubMed  Google Scholar 

  96. Corrado, D. et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 108, 3084–3091 (2003).

    PubMed  Google Scholar 

  97. Corrado, D. et al. Prophylactic implantable defibrillator in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia and no prior ventricular fibrillation or sustained ventricular tachycardia. Circulation 122, 1144–1152 (2010).

    PubMed  Google Scholar 

  98. Bushby, K., Lochmüller, H., Lynn, S. & Straub, V. Interventions for muscular dystrophy: molecular medicines entering the clinic. Lancet 374, 1849–1856 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by Telethon, Rome; CARIPARO Foundation, Padova; and Veneto Region, Venice, Italy.

Author information

Authors and Affiliations

Authors

Contributions

C. Basso researched the data, and all the authors contributed substantially to discussion of the content of the article. C. Basso wrote the manuscript, and all the authors were involved in reviewing and editing it before submission.

Corresponding author

Correspondence to Cristina Basso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basso, C., Bauce, B., Corrado, D. et al. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 9, 223–233 (2012). https://doi.org/10.1038/nrcardio.2011.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing