Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein aggregation diseases: pathogenicity and therapeutic perspectives

Key Points

  • Amyloids can be broadly defined as insoluble protein aggregates containing a characteristic highly ordered, β-sheet-rich structural motif. The latter can be identified histologically with dyes such as Congo Red and thioflavin. Some amyloids may have an adaptive physiological function; however, most amyloids are thought to be abnormal and are associated with a range of clinical pathologies including systemic amyloidoses and some neurodegenerative disorders.

  • Alzheimer's disease, the most common neurodegenerative disorder, is currently the focus of some of the most exciting and rapidly progressing research on amyloid therapeutics. Two main approaches are being pursued to deplete cerebral amyloid β (Aβ) levels, the primary component of senile plaques associated with Alzheimer's disease. The first approach involves inhibition of the secretases responsible for Aβ production. The second approach involves mobilization of the immune system to promote Aβ clearance.

  • Aβ is produced from the sequential proteolysis of amyloid precursor protein (APP) by β- and γ-secretase. The development of small-molecule inhibitors for these enzymes or complexes as a therapeutic method of depleting monomeric Aβ from the brain has met with considerable success, as well as several challenges. Most notably, the secretases have other non-APP substrates (for example, γ-secretase cleavage of Notch and β-secretase cleavage of Neuregulin 1) that are important for normal physiology.

  • Enhanced clearance of monomeric Aβ and Aβ aggregates by Aβ immunotherapy has been used successfully to lower cerebral Aβ levels and promote cognitive improvement in murine amyloid models. Initial attempts to actively immunize against Aβ in humans were suspended owing to the development of adverse immune responses in some patients. However, passive immunotherapeutic approaches have progressed to clinical trials, and administration of intravenous immunglobulins may also be effective for lowering Aβ levels in the brain.

  • Increasing evidence implicates specific forms of Aβ (for example, soluble Aβ oligomers and intraneuronal Aβ) in Alzheimer's disease-associated neurotoxicity, raising the intriguing possibility that therapies targeted at these pools of Aβ (for example, conformation-specific antibodies) may be effective in ameliorating cognitive deficits associated with Alzheimer's disease by blocking cell death pathways rather than altering Aβ homeostasis.

  • Prion diseases are the only known amyloidoses that act as genuine infectious diseases, with the possible exception of AA amyloidosis. The unusual properties of prion amyloid have presented significant challenges for therapeutics, as well as some opportunities to explore unique therapeutic modalities.

  • In many cases of acquired prion disease, prions first colonize and replicate in extraneural secondary lymphoid organs before being transmitted to the central nervous system (CNS). Blockade of prion replication at these extraneural sites (for example, by inhibition of lymphotoxin β receptor (LTβR) signalling) is an effective method to prevent the spread of prions from the periphery to the CNS and may be useful for post-exposure prophylaxis against prion infections.

  • Attempts to generate active immune responses against PrPSc (PrP with abnormal conformation) have had little success owing to immune tolerance of ubiquitously expressed endogenous PrPC(PrP with normal conformation). However, passive immunization with large doses of PrP antibodies isolated from Prnp−/− mice can prevent the spread of prions from the periphery to the CNS upon intraperitoneal inoculation. It has not yet been demonstrated that PrP immunotherapy is effective in slowing the rate of prion disease once it has reached the CNS. However, the development of PrP antibodies that effectively cross the blood–brain barrier may dramatically enhance the efficacy of PrP immunotherapy for the treatment of CNS prion infections.

  • Numerous compounds have been investigated or are being developed for their anti-aggregation properties including various amyloid-binding dyes, anti-malarial compounds, protein X mimetics, β-sheet breakers and scyllo-inositol. These compounds are still in development for the treatment of prion diseases and other neurodegenerative disorders; however, some of these compounds are currently in clinical trials for the treatment of systemic amyloidoses.

  • Several lines of evidence indicate that protein aggregates trigger specific cellular toxicity pathways in the brain, including the resistance of non-neuronal cell types and Prnp−/− neurons to PrPSc-induced toxicity. Intriguingly, PrPC was recently identified as a receptor for oligomeric Aβ, suggesting that diverse protein aggregates may activate common neurotoxicity pathways, which may have important therapeutic implications for amyloid diseases.

Abstract

A growing number of diseases seem to be associated with inappropriate deposition of protein aggregates. Some of these diseases — such as Alzheimer's disease and systemic amyloidoses — have been recognized for a long time. However, it is now clear that ordered aggregation of pathogenic proteins does not only occur in the extracellular space, but in the cytoplasm and nucleus as well, indicating that many other diseases may also qualify as amyloidoses. The common structural and pathogenic features of these diverse protein aggregation diseases is only now being fully understood, and may provide novel opportunities for overarching therapeutic approaches such as depleting the monomeric precursor protein, inhibiting aggregation, enhancing aggregate clearance or blocking common aggregation-induced cellular toxicity pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common features of protein aggregation and amyloids.
Figure 2: Characteristics of Alzheimer's disease.
Figure 3: Amyloid-β formation.
Figure 4: Characteristics of prion disease.
Figure 5: Possible roles of PrPC in oligomer-mediated toxicity.

Similar content being viewed by others

References

  1. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Virchow, R. Über eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaktion der Cellulose. Virchows Arch. 6, 135–138 (1853) (in German).

    Article  Google Scholar 

  3. Monsellier, E., Ramazzotti, M., Taddei, N. & Chiti, F. Aggregation propensity of the human proteome. PLoS Comput. Biol. 4, e1000199 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hull, R. L., Westermark, G. T., Westermark, P. & Kahn, S. E. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–3643 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161, 521–533 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Westermark, P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272, 5942–5949 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Vilar, M. et al. The fold of α-synuclein fibrils. Proc. Natl Acad. Sci. USA 105, 8637–8642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Maezawa, I. et al. Congo red and thioflavin-T analogs detect Aβ oligomers. J. Neurochem. 104, 457–468 (2008).

    CAS  PubMed  Google Scholar 

  10. Walsh, D. M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira, S. T., Vieira, M. N. & De Felice, F. G. Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases. IUBMB Life 59, 332–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Casas, C. et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ42 accumulation in a novel Alzheimer transgenic model. Am. J. Pathol. 165, 1289–1300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Barten, D. M. & Albright, C. F. Therapeutic strategies for Alzheimer's disease. Mol. Neurobiol. 37, 171–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Gura, T. Hope in Alzheimer's fight emerges from unexpected places. Nature Med. 14, 894 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Aguzzi, A. & Haass, C. Games played by rogue proteins in prion disorders and Alzheimer's disease. Science 302, 814–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Dovey, H. F. et al. Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Barten, D. M. et al. Dynamics of β-amyloid reductions in brain, cerebrospinal fluid, and plasma of β -amyloid precursor protein transgenic mice treated with a γ-secretase inhibitor. J. Pharmacol. Exp. Ther. 312, 635–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Best, J. D. et al. Quantitative measurement of changes in amyloid- β(40) in the rat brain and cerebrospinal fluid following treatment with the γ-secretase inhibitor LY-411575 [N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-ox o-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide]. J. Pharmacol. Exp. Ther. 313, 902–908 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Siemers, E. R. et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66, 602–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998). This was the first indication that presenilin 1 was crucial for γ-secretase activity and might constitute a viable drug target for Alzheimer's disease therapy.

    Article  CAS  PubMed  Google Scholar 

  24. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, J. et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Wong, G. T. et al. Chronic treatment with the γ-secretase inhibitor LY-411, 575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279, 12876–12882 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Duff, K. et al. Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lemere, C. A. et al. The E280A presenilin 1 Alzheimer mutation produces increased Aβ 42 deposition and severe cerebellar pathology. Nature Med. 2, 1146–1150 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Citron, M. et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med. 3, 67–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Fraering, P. C. et al. γ-Secretase substrate selectivity can be modulated directly via interaction with a nucleotide-binding site. J. Biol. Chem. 280, 41987–41996 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Imbimbo, B. P. et al. 1-(3′,4′-Dichloro-2-fluoro[1,1′-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074), a novel γ-secretase modulator, reduces brain β-amyloid pathology in a transgenic mouse model of Alzheimer's disease without causing peripheral toxicity. J. Pharmacol. Exp. Ther. 323, 822–830 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kukar, T. et al. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci. 8, 54 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Galasko, D. R. et al. Safety, tolerability, pharmacokinetics, and Aβ levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis. Assoc. Disord. 21, 292–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wilcock, G. K. et al. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer's disease: a randomised phase II trial. Lancet Neurol. 7, 483–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Myriad Genetics. Press release June 30: Myriad Genetics reports results of U.S. Phase 3 trial of Flurizan in Alzheimer's disease. Myriad Genetics website [online], (2008).

  41. Imbimbo, B. P. & Peretto, I. Semagacestat, a γ-secretase inhibitor for the potential treatment of Alzheimer's disease. Curr. Opin. Investig. Drugs 10, 721–730 (2009).

    CAS  PubMed  Google Scholar 

  42. Thathiah, A. et al. The orphan G protein-coupled receptor 3 modulates amyloid-β peptide generation in neurons. Science 323, 946–951 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Serneels, L. et al. γ-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer's disease. Science 324, 639–642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vassar, R. et al. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell Neurosci. 14, 419–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Lin, X. et al. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl Acad. Sci. USA 97, 1456–1460 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402, 537–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. Nature 402, 533–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Luo, Y. et al. Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nature Neurosci. 4, 231–232 (2001). This was the first demonstration that deficiency in BACE1 abolished β-amyloid production in vivo , establishing the β-secretase as a valid drug target for Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  50. Ohno, M. et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron 41, 27–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ohno, M. et al. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol. Dis. 26, 134–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Laird, F. M. et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci. 25, 11693–11709 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McConlogue, L. et al. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J. Biol. Chem. 282, 26326–26334 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Ghosh, A. K., Kumaragurubaran, N., Hong, L., Koelsh, G. & Tang, J. Memapsin 2 (β-secretase) inhibitors: drug development. Curr. Alzheimer Res. 5, 121–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nature Neurosci. 9, 1520–1525 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, D. Y. et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nature Cell Biol. 9, 755–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Kitazume, S. et al. In vivo cleavage of α2,6-sialyltransferase by Alzheimer β-secretase. J. Biol. Chem. 280, 8589–8595 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kuhn, P. H. et al. Regulated intramembrane proteolysis of the interleukin-1 receptor II by α-, β-, and γ-secretase. J. Biol. Chem. 282, 11982–11995 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Q. & Sudhof, T. C. Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1. J. Biol. Chem. 279, 10542–10550 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lichtenthaler, S. F. et al. The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J. Biol. Chem. 278, 48713–48719 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Pastorino, L. et al. BACE (β-secretase) modulates the processing of APLP2 in vivo. Mol. Cell Neurosci. 25, 642–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. von Arnim, C. A. et al. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem. 280, 17777–17785 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Willem, M. et al. β-Site amyloid precursor protein cleaving enzyme 1 increases amyloid deposition in brain parenchyma but reduces cerebrovascular amyloid angiopathy in aging BACE x APP[V717I] double-transgenic mice. Am. J. Pathol. 165, 1621–1631 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong, H. K. et al. β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J. Biol. Chem. 280, 23009–23017 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Neugroschl, J. & Sano, M. An update on treatment and prevention strategies for Alzheimer's disease. Curr. Neurol. Neurosci. Rep. 9, 368–376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O'Connor, T. et al. Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron 60, 988–1009 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wen, Y. et al. Transcriptional regulation of β-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron 57, 680–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hebert, S. S. et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc. Natl Acad. Sci. USA 105, 6415–6420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, W. X. et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. 28, 1213–1223 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med. 14, 723–730 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Tesco, G. et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron 54, 721–737 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He, W. et al. Reticulon family members modulate BACE1 activity and amyloid-β peptide generation. Nature Med. 10, 959–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Rajendran, L. et al. Efficient inhibition of the Alzheimer's disease β-secretase by membrane targeting. Science 320, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse Nature 400, 173–177 (1999). This was the first successful attempt to modify Alzheimer disease plaque pathology using A β immunotherapy in an animal model.

    Article  CAS  PubMed  Google Scholar 

  75. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B. & Wisniewski, T. Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer's disease-associated pathology in transgenic mice. Am. J. Pathol. 159, 439–447 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nature Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295, 2264–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Senior, K. Dosing in phase II trial of Alzheimer's vaccine suspended. Lancet Neurol. 1, 3 (2002). This Phase II study was the first attempt to treat Alzheimer's disease in humans with a disease-modifying therapy.

    Article  PubMed  Google Scholar 

  83. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Dodel, R. C. et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1472–1474 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Relkin, N. R. et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol. Aging 30, 1728–1736 (2008).

    Article  PubMed  CAS  Google Scholar 

  86. Samuelsson, A., Towers, T. L. & Ravetch, J. V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Schenk, D. Amyloid-β immunotherapy for Alzheimer's disease: the end of the beginning. Nature Rev. Neurosci. 3, 824–828 (2002).

    Article  CAS  Google Scholar 

  88. Jankowsky, J. L. et al. Persistent amyloidosis following suppression of Aβ production in a transgenic model of Alzheimer disease. PLoS Med. 2, e355 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Gabizon, R., McKinley, M. P., Groth, D. & Prusiner, S. B. Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc. Natl Acad. Sci. USA 85, 6617–6621 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilcock, G. K. & Esiri, M. M. Plaques, tangles and dementia. A quantitative study. J. Neurol. Sci. 56, 343–356 (1982).

    Article  CAS  PubMed  Google Scholar 

  91. Podlisny, M. B. et al. Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem. 270, 9564–9570 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Walsh, D. M., Tseng, B. P., Rydel, R. E., Podlisny, M. B. & Selkoe, D. J. The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 10831–10839 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Gong, Y. et al. Alzheimer's disease-affected brain: presence of oligomeric A β ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA 100, 10417–10422 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. McLaurin, J. et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Med. 12, 801–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Med. 14, 837–842 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Walsh, D. M. et al. The role of cell-derived oligomers of Aβ in Alzheimer's disease and avenues for therapeutic intervention. Biochem. Soc. Trans. 33, 1087–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Ma, Q. L. et al. β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, S. et al. Soluble oligomers of amyloid b protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Poon, W. W. et al. β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol. Aging 18 Jun 2009 (doi: 10.1016/j.neurobiolaging.2009.05.012).

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, W. Q. et al. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric Aβ. J. Biol. Chem. 284, 18742–18753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. De Felice, F. G. et al. Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc. Natl Acad. Sci. USA 106, 1971–1976 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kayed, R. & Glabe, C. G. Conformation-dependent anti-amyloid oligomer antibodies. Methods Enzymol. 413, 326–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Gouras, G. K. et al. Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 156, 15–20 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zerbinatti, C. V. et al. Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Aβ42 accumulation in amyloid model mice. J. Biol. Chem. 281, 36180–36186 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Tampellini, D. et al. Synaptic activity reduces intraneuronal Aβ, promotes APP transport to synapses, and protects against Aβ-related synaptic alterations. J. Neurosci. 29, 9704–9713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Spencer, B. et al. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Aβ and behavioral improvement in APP transgenic mice. BMC Neurosci. 9, 109 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Arbel, M. & Solomon, B. Immunotherapy for Alzheimer's disease: attacking amyloid-β from the inside. Trends Immunol. 28, 511–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Kitazawa, M., Vasilevko, V., Cribbs, D. H. & LaFerla, F. M. Immunization with amyloid-β attenuates inclusion body myositis-like myopathology and motor impairment in a transgenic mouse model. J. Neurosci. 29, 6132–6141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wegenast-Braun, B. M. et al. Independent effects of intra- and extracellular Aβ on learning-related gene expression. Am. J. Pathol. 175, 271–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aguzzi, A., Sigurdson, C. & Heikenwaelder, M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol. 3, 11–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Aguzzi, A. Cell biology: Beyond the prion principle. Nature 459, 924–925 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Prinz, M. et al. Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc. Natl Acad. Sci. USA 99, 919–924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bremer, J. et al. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions. PLoS One 4, e7160 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sigurdson, C. J. et al. Bacterial colitis increases susceptibility to oral prion disease. J. Infect. Dis. 199, 243–252 (2009).

    Article  PubMed  Google Scholar 

  119. Ligios, C. et al. PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Med. 11, 1137–1138 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Heikenwalder, M. et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307, 1107–1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Prinz, M. et al. Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep. 4, 195–199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Aguzzi, A. & Sigurdson, C. J. Antiprion immunotherapy: to suppress or to stimulate? Nature Rev. Immunol. 4, 725–736 (2004).

    Article  CAS  Google Scholar 

  124. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000). This was the first successful attempt to block peripheral prion replication pharmacologically in an animal model.

    Article  CAS  PubMed  Google Scholar 

  125. Heikenwalder, M. et al. Lymphotoxin-dependent prion replication in inflammatory stromal cells of granulomas. Immunity 29, 998–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Nuvolone, M., Aguzzi, A. & Heikenwalder, M. Cells and prions: a license to replicate. FEBS Lett. 583, 2674–2684 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Sigurdsson, E. M. et al. Immunization delays the onset of prion disease in mice. Am. J. Pathol. 161, 13–17 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Magri, G. et al. Decrease in pathology and progression of scrapie after immunisation with synthetic prion protein peptides in hamsters. Vaccine 23, 2862–2868 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Polymenidou, M. et al. Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc. Natl Acad. Sci. USA 101, 14670–14676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sigurdsson, E. M. et al. Anti-prion antibodies for prophylaxis following prion exposure in mice. Neurosci. Lett. 336, 185–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Souan, L. et al. Modulation of proteinase-K resistant prion protein by prion peptide immunization. Eur. J. Immunol. 31, 2338–2346 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Heppner, F. L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001). This was the first demonstration that the course of prion disease could be significantly altered by PrP antibodies.

    Article  CAS  PubMed  Google Scholar 

  133. White, A. R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Trevitt, C. R. & Collinge, J. A systematic review of prion therapeutics in experimental models. Brain 129, 2241–2265 (2006).

    Article  PubMed  Google Scholar 

  136. Kolstoe, S. E. et al. Molecular dissection of Alzheimer's disease neuropathology by depletion of serum amyloid P component. Proc. Natl Acad. Sci. USA 106, 7619–7623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Doh-Ura, K., Iwaki, T. & Caughey, B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74, 4894–4897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Korth, C., May, B. C., Cohen, F. E. & Prusiner, S. B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci. USA 98, 9836–9841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ryou, C. et al. Differential inhibition of prion propagation by enantiomers of quinacrine. Lab. Invest. 83, 837–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Doh-Ura, K. et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J. Virol. 78, 4999–5006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Barret, A. et al. Evaluation of quinacrine treatment for prion diseases. J. Virol. 77, 8462–8469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Collinge, J. et al. Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol. 8, 334–344 (2009). This was the first anti-aggregation compound to be tested for efficacy in the treatment of prion disease in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Perrier, V. et al. Mimicking dominant negative inhibition of prion replication through structure-based drug design. Proc. Natl Acad. Sci. USA 97, 6073–6078 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Reddy, T. R. et al. Library design, synthesis, and screening: pyridine dicarbonitriles as potential prion disease therapeutics. J. Med. Chem. 49, 607–615 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Soto, C. et al. Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet 355, 192–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Soto, C. et al. β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nature Med. 4, 822–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Ma, J., Brewer, H. B. Jr., & Potter, H. Alzheimer Aβ neurotoxicity: promotion by antichymotrypsin, ApoE4; inhibition by A β-related peptides. Neurobiol. Aging 17, 773–780 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Pepys, M. B. et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417, 254–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Sigurdson, C. J. et al. Prion strain discrimination using luminescent conjugated polymers. Nature Methods 4, 1023–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Sekijima, Y., Kelly, J. W. & Ikeda, S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr. Pharm. Des. 14, 3219–3230 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rodgers, W., Crise, B. & Rose, J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol. Cell Biol. 14, 5384–5391 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Arreaza, G. & Brown, D. A. Sorting and intracellular trafficking of a glycosylphosphatidylinositol-anchored protein and two hybrid transmembrane proteins with the same ectodomain in Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 270, 23641–23647 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fivaz, M. et al. Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J. 21, 3989–4000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shmerling, D. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Baumann, F. et al. Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J. 26, 538–547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, A. et al. Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105–125 EMBO J. 26, 548–558 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Luhrs, T. et al. 3D structure of Alzheimer's amyloid-β(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Heikenwalder, M. et al. Germinal center B cells are dispensable in prion transport and neuroinvasion. J. Neuroimmunol. 192, 113–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Sponarova, J., Nystrom, S. N. & Westermark G. T. AA-amyloidosis can be transferred by peripheral blood monocytes. PLoS ONE 3, e3308 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Mabbott, N. A., Young, J., McConnell, I & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6854–6854 (2003).

    Article  CAS  Google Scholar 

  166. Nilsson, K. P. et al. Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectroscopy. Am. J. Pathol. 176, 563–574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hetz, C. et al. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 22, 5435–5445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Elan. Press Release 8 July 2009: Elan to Showcase Its Leadership in Alzheimer's Disease at Upcoming International Meeting. Elan website [online], = (2009).

    Google Scholar 

Download references

Acknowledgements

Stained sections from human Alzheimer's diseased brains, prion-diseased brains, kidney amyloidosis, and the PrPSc histoblot were provided courtesy of J. Haybaeck, H. Fischer, V. Kana and M. Heikenwälder of the Institute for Neuropathology at the University Hospital of Zürich, Switzerland. The Aguzzi laboratory is supported by grants of the Ernst-Jung-Foundation, the Stammbach foundation, the EU (LUPAS, PRIORITY), the Swiss National Science Foundation, a Sinergia grant, and the National Competence Center on Neural Plasticity and Repair. A.A. is a recipient of an Advanced Grant of the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Creutzfeldt–Jakob disease

fatal familial insomnia

Gerstmann–Sträussler–Scheinker syndrome

Huntington's disease

Parkinson's disease

FURTHER INFORMATION

Adriano Aguzzi's homepage

Glossary

Blood–brain barrier

A protective wall of capillary epithelium separating the brain parenchyma from the bloodstream that is impenetrable to most circulating substances.

Passive transfer

A process by which a host acquires exogenous antibodies and hence immunity to an immunogen without generating an active immune response.

Long-term depression

An enduring weakening of synaptic strength that is thought to interact with long-term potentiation (LTP) in the cellular mechanisms of learning and memory. Unlike LTP, which is produced by brief high-frequency stimulation, LTD can be produced by long-term, low-frequency stimulation.

Long-term potentiation

A persistent increase in synaptic response following repeated stimulation of a neuron, which is thought to be associated with synaptic plasticity and the acquisition of memories.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A., O'Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9, 237–248 (2010). https://doi.org/10.1038/nrd3050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing