Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets

Key Points

  • CCNs are a family of extracellular matrix proteins that regulate diverse aspects of cellular functions, and are involved in inflammation and tissue repair.

  • Deregulation of CCN proteins is associated with many diseases; CCN proteins contribute to fibrosis, cancer and arthritis, as well as diabetic nephropathy and retinopathy.

  • Members of the CCN family of proteins may have opposing functions. For example, CCN2 and CCN4 are pro-fibrotic, whereas CCN1, CCN3 and CCN5 are antifibrotic.

  • Detection of CCN proteins or protein fragments in biological fluids may have diagnostic or prognostic value in some pathologies, including fibrosis and cancer.

  • In proof-of-principle studies, targeting CCN proteins has been shown to be therapeutically beneficial in fibrosis, cancer and diabetic nephropathy.

  • In clinical trials, targeting CCN2 has shown encouraging results in several human diseases, including fibrosis and diabetic nephropathy.

Abstract

Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases — many of which may arise when inflammation or tissue injury becomes chronic — including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This Review summarizes the biology of CCN proteins, their roles in various pathologies and their potential as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional regulation of genes encoding CCN proteins*.
Figure 2: Molecular interactions through modular domains of CCN proteins.
Figure 3: Signalling mechanism of CCN1-induced senescence and crosstalk with TNF and FASL.
Figure 4: Role of CCN proteins in wound healing.

Similar content being viewed by others

References

  1. Bornstein, P. & Sage, E. H. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 14, 608–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, C.-C. & Lau, L. F. Functions and mechanisms of action of CCN matricellular proteins. Int. J. Biochem. Cell Biol. 41, 771–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Leask, A. & Abraham, D. J. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J. Cell Sci. 119, 4803–4810 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Holbourn, K. P., Acharya, K. R. & Perbal, B. The CCN family of proteins: structure-function relationships. Trends Biochem. Sci. 33, 461–473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perbal, B. & Takigawa, M. (eds) CCN Proteins: A New Family of Cell Growth and Differentiation Regulators (Imperial College Press, London, 2005). This monograph is a collection of reviews on various aspects of CCN biology.

    Book  Google Scholar 

  6. Adler, S. G. et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol. 5, 1420–1428 (2010). This paper reports that in a Phase I clinical trial, treatment with the humanized monoclonal CCN2-specific antibody FG-3019 is well tolerated in patients with microalbuminuric diabetic kidney disease, and the treatment is associated with a decrease in albuminuria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, C.-C. et al. Cytotoxicity of TNFα is regulated by integrin-mediated matrix signaling. EMBO J. 26, 1257–1267 (2007). This study reports the signalling crosstalk between CCN proteins and TNF, shows that CCN1 is a physiological regulator of TNF cytotoxicity, and is the first demonstration that CCN proteins function through integrins in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jun, J.-I. & Lau, L. F. The matricellular protein CCN1/CYR61 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biol. 12, 676–685 (2010). This study was the first to show that cell adhesion to the ECM can induce cellular senescence through an integrin-mediated pathway, and established CCN1 as a senescence switch that converts ECM-producing myofibroblasts into ECM-degrading cells, thereby limiting fibrosis in wound healing.

    Article  CAS  PubMed  Google Scholar 

  9. Todorovic, V., Chen, C.-C., Hay, N. & Lau, L. F. The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J. Cell Biol. 171, 559–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Lillis, A. P., Van Duyn, L. B., Murphy-Ullrich, J. E. & Strickland, D. K. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Mercurio, S., Latinkic, B., Itasaki, N., Krumlauf, R. & Smith, J. C. Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development 131, 2137–2147 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Wahab, N. A., Weston, B. S. & Mason, R. M. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J. Am. Soc. Nephrol. 16, 340–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Edwards, L. A. et al. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. J. Natl Cancer Inst. 103, 1162–1178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakamoto, K. et al. The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J. Biol. Chem. 277, 29399–29405 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Minamizato, T. et al. CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways. Biochem. Biophys. Res. Commun. 354, 567–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C.-C., Chen, N. & Lau, L. F. The angiogenic factors Cyr61 and CTGF induce adhesive signaling in primary human skin fibroblasts. J. Biol. Chem. 276, 10443–10452 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi, T. et al. Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology 141, 264–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Safadi, F. F. et al. Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J. Cell Physiol. 196, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Abdel-Wahab, N., Weston, B. S., Roberts, T. & Mason, R. M. Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J. Am. Soc. Nephrol. 13, 2437–2445 (2002).

    Article  PubMed  Google Scholar 

  20. Benini, S. et al. In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 24, 4349–4361 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Fan, W. H., Pech, M. & Karnovsky, M. J. Connective tissue growth factor (CTGF) stimulates vascular smooth muscle cell growth and migration in vitro. Eur. J. Cell Biol. 79, 915–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Grzeszkiewicz, T. M., Lindner, V., Chen, N., Lam, S. C. T. & Lau, L. F. The angiogenic factor CYR61 supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin α6β1 and cell surface heparan sulfate proteoglycans. Endocrinology 143, 1441–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lake, A. C., Bialik, A., Walsh, K. & Castellot, J. J. Jr. CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. Am. J. Pathol. 162, 219–231 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shimoyama, T. et al. CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler. Thromb. Vasc. Biol. 30, 675–682 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C. C. & Lau, L. F. Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. J. Cell Commun. Signal. 4, 63–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Juric, V., Chen, C. C. & Lau, L. F. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol. Cell. Biol. 29, 3266–3279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franzen, C. A. et al. The matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol. Cancer Res. 7, 1045–1055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Venkatachalam, K. et al. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-α (TNF-α)-stimulated cardiac fibroblast proliferation but inhibits TNF-α-induced cardiomyocyte death. J. Biol. Chem. 284, 14414–14427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jun, J. I. & Lau, L. F. Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2, 627–631 (2010).

    Article  CAS  Google Scholar 

  31. Babic, A. M., Kireeva, M. L., Kolesnikova, T. V. & Lau, L. F. CYR61, product of a growth factor-inducible immediate-early gene, promotes angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 95, 6355–6360 (1998). This paper was the first to report the discovery of angiogenic activity in a CCN protein; this research showed that this angiogenic function is mediated through αVβ3 integrin, and that CCN1 promotes tumour growth by enhancing vascular density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubota, S. & Takigawa, M. CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Mo, F. E. et al. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol. Cell Biol. 22, 8709–8720 (2002). This paper describes the Ccn1 -knockout phenotypes in mice and establishes CCN1 functions in placentation and cardiovascular development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inoki, I. et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 16, 219–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Dean, R. A. et al. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol. Cell Biol. 27, 8454–8465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kular, L., Pakradouni, J., Kitabgi, P., Laurent, M. & Martinerie, C. The CCN family: a new class of inflammation modulators? Biochimie 93, 377–388 (2010). This is a thorough review of CCN protein expression and function in inflammation and inflammation-related pathologies.

    Article  CAS  PubMed  Google Scholar 

  37. Lau, L. F. CCN1/CYR61: the very model of a modern matricellular protein. Cell. Mol. Life Sci. 68, 3149–3163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubota, S. & Takigawa, M. The role of CCN2 in cartilage and bone development. J. Cell Commun. Signal. 5, 209–217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abreu, J. G., Ketpura, N. I., Reversade, B. & De Robertis, E. M. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nature Cell Biol. 4, 599–604 (2002). This paper was the first to show that CCN proteins can bind to TGFβ and BMPs to modulate the activities of these proteins.

    Article  CAS  PubMed  Google Scholar 

  40. Maeda, A. et al. CCN family 2/connective tissue growth factor modulates BMP signalling as a signal conductor, which action regulates the proliferation and differentiation of chondrocytes. J. Biochem. 145, 207–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Ono, M., Inkson, C. A., Kilts, T. M. & Young, M. F. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J. Bone Miner. Res. 26, 193–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Crockett, J. C. et al. The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of αvβ3 and αvβ5. Endocrinology 148, 5761–5768 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ouellet, V. et al. CCN3 impairs osteoblast and stimulates osteoclast differentiation to favor breast cancer metastasis to bone. Am. J. Pathol. 178, 2377–2388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rydziel, S. et al. Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia. J. Biol. Chem. 282, 19762–19772 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Smerdel-Ramoya, A., Zanotti, S., Stadmeyer, L., Durant, D. & Canalis, E. Skeletal overexpression of connective tissue growth factor impairs bone formation and causes osteopenia. Endocrinology 149, 4374–4381 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai, T., Chen, C.-C. & Lau, L. F. The matricellular protein CCN1 activates a pro-inflammatory genetic program in murine macrophages. J. Immunol. 184, 3223–3232 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Rother, M. et al. Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation 122, 2688–2698 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, Z. et al. A novel role of CCN3 in regulating endothelial inflammation. J. Cell Commun. Signal. 4, 141–153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee, C. H., Shah, B., Moioli, E. K. & Mao, J. J. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J. Clin. Invest. 120, 3340–3349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo, Q. et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 55958–55968 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Si, W. et al. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol. Cell Biol. 26, 2955–2964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gupta, R., Hong, D., Iborra, F., Sarno, S. & Enver, T. NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316, 590–593 (2007). This paper was the first to show that CCN3 is crucial for self-renewal of haematopoietic stem cells, confers a selective engraftment potential and is important for the development of the myelomonocytic and erythroid lineages.

    Article  CAS  PubMed  Google Scholar 

  53. Katsuki, Y. et al. Inhibitory effect of CT domain of CCN3/NOV on proliferation and differentiation of osteogenic mesenchymal stem cells, Kusa-A1. Biochem. Biophys. Res. Commun. 368, 808–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Mo, F.-E. & Lau, L. F. The matricellular protein CCN1 is essential for cardiac development. Circ. Res. 99, 961–969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheffield, V. C. et al. Identification of a complex congenital heart defect susceptibility locus by using DNA pooling and shared segment analysis. Hum. Mol. Genet. 6, 117–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Ivkovic, S. et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779–2791 (2003). This paper describes the Ccn2 -knockout phenotypes in mice and establishes the crucial functions of CCN2 in skeletal development.

    Article  CAS  PubMed  Google Scholar 

  57. Baguma-Nibasheka, M. & Kablar, B. Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev. Dyn. 237, 485–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Crawford, L. A. et al. Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and β-cell proliferation during embryogenesis. Mol. Endocrinol. 23, 324–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagashima, T. et al. Connective tissue growth factor is required for normal follicle development and ovulation. Mol. Endocrinol. 25, 1740–1759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Canalis, E. et al. Nephroblastoma overexpressed (Nov) inactivation sensitizes osteoblasts to bone morphogenetic protein-2, but Nov is dispensable for skeletal homeostasis. Endocrinology 151, 221–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Russo, J. W. & Castellot, J. J. CCN5: biology and pathophysiology. J. Cell Commun. Signal. 4, 119–130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kutz, W. E., Gong, Y. & Warman, M. L. WISP3, the gene responsible for the human skeletal disease progressive pseudorheumatoid dysplasia, is not essential for skeletal function in mice. Mol. Cell Biol. 25, 414–421 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Stramer, B. M., Mori, R. & Martin, P. The inflammation–fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J. Invest. Dermatol. 127, 1009–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Cicha, I., Garlichs, C. D., Daniel, W. G. & Goppelt-Struebe, M. Activated human platelets release connective tissue growth factor. Thromb. Haemost. 91, 755–760 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Kubota, S. et al. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J. Biochem. 136, 279–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Brigstock, D. R. Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J. Cell Commun. Signal. 4, 1–4 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mori, T. et al. Role and interaction of connective tissue growth factor with transforming growth factor-β in persistent fibrosis: a mouse fibrosis model. J. Cell Physiol. 181, 153–159 (1999). This paper establishes that CCN2 and TGFβ act synergistically to promote fibrosis in vivo.

    Article  CAS  PubMed  Google Scholar 

  69. Leask, A., Parapuram, S. K., Shi-wen, X. & Abraham, D. J. Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J. Cell Commun. Signal. 3, 89–94 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Phanish, M. K., Winn, S. K. & Dockrell, M. E. Connective tissue growth factor-(CTGF, CCN2) — a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp. Nephrol. 114, e83–e92 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Sonnylal, S. et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 62, 1523–1532 (2010). This study shows that selective expression of CCN2 in fibroblasts alone can promote tissue fibrosis in vivo , suggesting that the action of CCN2 is strongly autocrine in nature.

    Article  CAS  PubMed  Google Scholar 

  72. Liu, S., Shi-wen, X., Abraham, D. J. & Leask, A. CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 63, 239–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Uchio, K., Graham, M., Dean, N. M., Rosenbaum, J. & Desmouliere, A. Down-regulation of connective tissue growth factor and type I collagen mRNA expression by connective tissue growth factor antisense oligonucleotide during experimental liver fibrosis. Wound Repair Regen. 12, 60–66 (2004).

    Article  PubMed  Google Scholar 

  74. Li, G. et al. Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J. Gene Med. 8, 889–900 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. George, J. & Tsutsumi, M. siRNA-mediated knockdown of connective tissue growth factor prevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Ther. 14, 790–803 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yokoi, H. et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 15, 1430–1440 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Sisco, M. et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen. 16, 661–673 (2008).

    Article  PubMed  Google Scholar 

  78. Okada, H. et al. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J. Am. Soc. Nephrol. 16, 133–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Konigshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119, 772–787 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Riser, B. L. et al. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am. J. Pathol. 174, 1725–1734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yoon, P. O. et al. The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J. Mol. Cell Cardiol. 49, 294–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Schafer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nature Rev. Mol. Cell Biol. 9, 628–638 (2008).

    Article  CAS  Google Scholar 

  84. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Dhar, A. & Ray, A. The CCN family proteins in carcinogenesis. Exp. Oncol. 32, 2–9 (2010).

    CAS  PubMed  Google Scholar 

  86. Dobroff, A. S. et al. Silencing cAMP-response element binding protein (CREB) identifies cysteine-rich protein 61 (CYR61) as a tumor suppressor gene in melanoma. J. Biol. Chem. 284, 26194–26206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, B. R. et al. Connective tissue growth factor acts as a therapeutic agent and predictor for peritoneal carcinomatosis of colorectal cancer. Clin. Cancer Res. 17, 3077–3088 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Shimo, T. et al. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology 61, 315–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Xie, D. et al. Breast cancer: Cyr61 is overexpressed, estrogen-inducible, and associated with more advanced disease. J. Biol. Chem. 276, 14187–14194 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Tsai, M. S., Bogart, D. F., Castaneda, J. M., Li, P. & Lupu, R. Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 21, 8178–8185 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, F. et al. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65, 8887–8895 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Yin, D. et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int. J. Cancer 127, 2257–2267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun, Z. J. et al. Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br. J. Cancer 99, 1656–1667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bennewith, K. L. et al. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 69, 775–784 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haque, I. et al. Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis. Mol. Cancer 10, 8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gery, S. et al. Ovarian carcinomas: CCN genes are aberrantly expressed and CCN1 promotes proliferation of these cells. Clin. Cancer Res. 11, 7243–7254 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Shi, Y. et al. Homologous peptide of connective tissue growth factor ameliorates epithelial to mesenchymal transition of tubular epithelial cells. Cytokine 36, 35–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, M. T. et al. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-κB-dependent XIAP up-regulation. J. Biol. Chem. 279, 24015–24023 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, M. Y. et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 69, 3482–3491 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Lai, D., Ho, K. C., Hao, Y. & Yang, X. Taxol resistance in breast cancer cells is mediated by the Hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 71, 2728–2738 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Goodwin, C. R. et al. Cyr61 mediates hepatocyte growth factor-dependent tumor cell growth, migration, and Akt activation. Cancer Res. 70, 2932–2941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Shimo, T. et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J. Bone Miner. Res. 21, 1045–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Dornhofer, N. et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 66, 5816–5827 (2006). This study shows that using a CCN2-specific monoclonal antibody (FG-3019) to treat mice with pre-established pancreatic tumours results in inhibition of tumour growth and metastasis without any toxicity observed in normal tissues.

    Article  PubMed  Google Scholar 

  105. Aikawa, T., Gunn, J., Spong, S. M., Klaus, S. J. & Korc, M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol. Cancer Ther. 5, 1108–1116 (2006). This study shows that the treatment of orthotopically implanted pancreatic tumours in nude mice with the monoclonal antibody FG-3019 decreases tumour growth and metastasis.

    Article  CAS  PubMed  Google Scholar 

  106. Xu, L., Corcoran, R. B., Welsh, J. W., Pennica, D. & Levine, A. J. WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes Dev. 14, 585–595 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie, D., Nakachi, K., Wang, H., Elashoff, R. & Koeffler, H. P. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 61, 8917–8923 (2001).

    CAS  PubMed  Google Scholar 

  108. Tian, C. et al. Overexpression of connective tissue growth factor WISP-1 in Chinese primary rectal cancer patients. World J. Gastroenterol. 13, 3878–3882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, P. P. et al. Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS ONE 2, e534 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hashimoto, Y. et al. Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses in vivo tumor growth and metastasis of K-1735 murine melanoma cells. J. Exp. Med. 187, 289–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Soon, L. L. et al. Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J. Biol. Chem. 278, 11465–11470 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Tanaka, S. et al. A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene 20, 5525–5532 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Bleau, A. M. et al. Antiproliferative activity of CCN3: involvement of the C-terminal module and post-translational regulation. J. Cell Biochem. 101, 1475–1491 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Gupta, N. et al. Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol. Pathol. 54, 293–299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vallacchi, V. et al. CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma. Cancer Res. 68, 715–723 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Perbal, B. et al. Prognostic relevance of CCN3 in Ewing sarcoma. Hum. Pathol. 40, 1479–1486 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Ghayad, S. E. et al. Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J. Mol. Endocrinol. 42, 87–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. McCallum, L. et al. A novel mechanism for BCR-ABL action: stimulated secretion of CCN3 is involved in growth and differentiation regulation. Blood 108, 1716–1723 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. McCallum, L. et al. CCN3 suppresses mitogenic signalling and reinstates growth control mechanisms in chronic myeloid leukaemia. J. Cell Commun. Signal. 20 Jul 2011 (doi:10.1007/s12079-011-0142-2).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kleer, C. G. et al. WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene 21, 3172–3180 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Lorenzatti, G., Huang, W., Pal, A., Cabanillas, A. M. & Kleer, C. G. CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. J. Cell Sci. 124, 1752–1758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schmitt, C. A. Senescence, apoptosis and therapy — cutting the lifelines of cancer. Nature Rev. Cancer 3, 286–295 (2003).

    Article  CAS  Google Scholar 

  123. Navarro-Gonzalez, J. F., Mora-Fernandez, C., Muros de, F. M. & Garcia-Perez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Rev. Nephrol. 7, 327–340 (2011).

    Article  CAS  Google Scholar 

  124. Tang, J. & Kern, T. S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 30, 343–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yan, S. F., Ramasamy, R. & Schmidt, A. M. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Clin. Pract. Endocrinol. Metab. 4, 285–293 (2008).

    Article  CAS  Google Scholar 

  126. Murphy, M. et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J. Biol. Chem. 274, 5830–5834 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Twigg, S. M. et al. Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine. Endocrinology 143, 4907–4915 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Hughes, J. M. et al. Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia 50, 1089–1098 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chaqour, B. & Goppelt-Struebe, M. Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J. 273, 3639–3649 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Mason, R. M. Connective tissue growth factor (CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it? J. Cell Commun. Signal. 3, 95–104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sawai, K. et al. Expression of CCN1 (CYR61) in developing, normal, and diseased human kidney. Am. J. Physiol. Renal Physiol. 293, F1363–F1372 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Sanchez-Lopez, E. et al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-κB. J. Am. Soc. Nephrol. 20, 1513–1526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guha, M., Xu, Z. G., Tung, D., Lanting, L. & Natarajan, R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 21, 3355–3368 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Yokoi, H. et al. Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice. Kidney Int. 73, 446–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Wolf, G. & Ritz, E. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int. 67, 799–812 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Jaffa, A. A. et al. Connective tissue growth factor and susceptibility to renal and vascular disease risk in type 1 diabetes. J. Clin. Endocrinol. Metab. 93, 1893–1900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nguyen, T. Q. et al. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31, 1177–1182 (2008).

    Article  PubMed  Google Scholar 

  138. You, J. J., Yang, C. H., Chen, M. S. & Yang, C. M. Cysteine-rich 61, a member of the CCN family, as a factor involved in the pathogenesis of proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 50, 3447–3455 (2009).

    Article  PubMed  Google Scholar 

  139. Kuiper, E. J. et al. Association of connective tissue growth factor with fibrosis in vitreoretinal disorders in the human eye. Arch. Ophthalmol. 124, 1457–1462 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Kuiper, E. J. et al. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J. Histochem. Cytochem. 56, 785–792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hilfiker, A. et al. Expression of CYR61, an angiogenic immediate early gene, in arteriosclerosis and its regulation by angiotensin II. Circulation 106, 254–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Cicha, I. et al. Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. Arterioscler. Thromb. Vasc. Biol. 25, 1008–1013 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Kundi, R. et al. Arterial gene transfer of the TGF-β signalling protein Smad3 induces adaptive remodelling following angioplasty: a role for CTGF. Cardiovasc. Res. 84, 326–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, H. Y. et al. Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ. Res. 100, 372–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Matsumae, H. et al. CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler. Thromb. Vasc. Biol. 28, 1077–1083 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Reynolds, A. R. et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nature Med. 15, 392–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Hilfiker-Kleiner, D. et al. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109, 2227–2233 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Dean, R. G. et al. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J. Histochem. Cytochem. 53, 1245–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Panek, A. N. et al. Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS ONE 4, e6743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Omoto, S. et al. Expression and localization of connective tissue growth factor (CTGF/Hcs24/CCN2) in osteoarthritic cartilage. Osteoarthr. Cartil. 12, 771–778 (2004).

    Article  Google Scholar 

  151. Blom, A. B. et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum. 60, 501–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Nishida, T. et al. Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J. Bone Miner. Res. 19, 1308–1319 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Nakata, E. et al. Expression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) during fracture healing. Bone 31, 441–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Athanasopoulos, A. N. et al. Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J. Biol. Chem. 282, 26746–26753 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Nozawa, K. et al. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, Q. et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 60, 3602–3612 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Koon, H. W. et al. Substance P-mediated expression of the pro-angiogenic factor CCN1 modulates the course of colitis. Am. J. Pathol. 173, 400–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ueberham, U., Ueberham, E., Gruschka, H. & Arendt, T. Connective tissue growth factor in Alzheimer's disease. Neuroscience 116, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Zhao, Z. et al. Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance-associated promotion of Alzheimer's disease β-amyloid neuropathology. FASEB J. 19, 2081–2082 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Hurvitz, J. R. et al. Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nature Genet. 23, 94–98 (1999). This report demonstrates that loss-of-function mutations in CCN6 are associated with progressive pseudorheumatoid dysplasia — a human autosomal recessive disorder.

    Article  CAS  PubMed  Google Scholar 

  161. Nakamura, Y. et al. The CCN family member Wisp3, mutant in progressive pseudorheumatoid dysplasia, modulates BMP and Wnt signaling. J. Clin. Invest. 117, 3075–3086 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fonseca, C. et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N. Engl. J. Med. 357, 1210–1220 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Kawaguchi, Y. et al. Association study of a polymorphism of the CTGF gene and susceptibility to systemic sclerosis in the Japanese population. Ann. Rheum. Dis. 68, 1921–1924 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Granel, B. et al. Association between a CTGF gene polymorphism and systemic sclerosis in a French population. J. Rheumatol. 37, 351–358 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Rueda, B. et al. A large multicentre analysis of CTGF-945 promoter polymorphism does not confirm association with systemic sclerosis susceptibility or phenotype. Ann. Rheum. Dis. 68, 1618–1620 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Brigstock, D. R. Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): from pharmacological inhibition in vitro to targeted siRNA therapy in vivo. J. Cell Commun. Signal. 3, 5–18 (2009). This is a comprehensive summary of strategies targeting CCN2 in various animal models of organ fibrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vial, C., Gutierrez, J., Santander, C., Cabrera, D. & Brandan, E. Decorin interacts with connective tissue growth factor (CTGF)/CCN2 by LRR12 inhibiting its biological activity. J. Biol. Chem. 286, 24242–24252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Desnoyers, L., Arnott, D. & Pennica, D. WISP-1 binds to decorin and biglycan. J. Biol. Chem. 276, 47599–47607 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Leu, S.-J., Lam, S. C. T. & Lau, L. F. Proangiogenic activities of CYR61 (CCN1) mediated through integrins αvβ3 and α6β1 in human umbilical vein endothelial cells. J. Biol. Chem. 277, 46248–46255 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Leu, S.-J. et al. Identification of a novel integrin α6β1 binding site in the angiogenic inducer CCN1 (CYR61). J. Biol. Chem. 278, 33801–33808 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Leu, S.-J. et al. Targeted mutagenesis of the matricellular protein CCN1 (CYR61): selective inactivation of integrin α61-heparan sulfate proteoglycan coreceptor-mediated cellular activities. J. Biol. Chem. 279, 44177–44187 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Q. et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mageto, Y., Flaherty, K., Brown, A. & Raghu, G. Safety and tolerability of human monoclonal antibody FG-3019, anti-connective tissue growth factor, in patients with idiopathic pulmonary fibrosis. Chest 126, 773S (2004).

    Article  Google Scholar 

  174. Zhang, Y. et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am. J. Obstet. Gynecol. 202, 466–467 (2010).

    Article  PubMed  Google Scholar 

  175. Dendooven, A., Gerritsen, K. G., Nguyen, T. Q., Kok, R. J. & Goldschmeding, R. Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers 16, 289–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. D'Antonio, K. B. et al. Decreased expression of Cyr61 is associated with prostate cancer recurrence after surgical treatment. Clin. Cancer Res. 16, 5908–5913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Katsube, K., Sakamoto, K., Tamamura, Y. & Yamaguchi, A. Role of CCN, a vertebrate specific gene family, in development. Dev. Growth Differ. 51, 55–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Duisters, R. F. et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Ohgawara, T. et al. Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett. 583, 1006–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl Acad. Sci. USA 96, 13118–13123 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mukudai, Y. et al. A coding RNA segment that enhances the ribosomal recruitment of chicken ccn1 mRNA. J. Cell Biochem. 111, 1607–1618 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Perbal, B. Alternative splicing of CCN mRNAs... it has been upon us. J. Cell Commun. Signal. 3, 153–157 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hirschfeld, M. et al. Expression of tumor-promoting Cyr61 is regulated by hTRA2-β1 and acidosis. Hum. Mol. Genet. 20, 2356–2365 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Guillon-Munos, A. et al. Kallikrein-related peptidase 12 hydrolyzes matricellular proteins of the CCN family and modifies interactions of CCN1 and CCN5 with growth factors. J. Biol. Chem. 286, 25505–25518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yang, W. et al. Impact of CCN3 (NOV) glycosylation on migration/invasion properties and cell growth of the choriocarcinoma cell line Jeg3. Hum. Reprod. 26, 2850–2860 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Leng, E., Malcolm, T., Tai, G., Estable, M. & Sadowski, I. Organization and expression of the Cyr61 gene in normal human fibroblasts. J. Biomed. Sci. 9, 59–67 (2002).

    CAS  PubMed  Google Scholar 

  188. Sabbah, M. et al. CCN5, a novel transcriptional repressor of transforming growth factor-β signaling pathway. Mol. Cell Biol. 31, 1459–1469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Walsh, C. T., Stupack, D. & Brown, J. H. G protein-coupled receptors go extracellular: RhoA integrates the integrins. Mol. Interv. 8, 165–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Hoshijima, M. et al. CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin α5β1. FEBS Lett. 580, 1376–1382 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Nishida, T. et al. CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J. Cell Physiol. 196, 265–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Francischetti, I. M., Kotsyfakis, M., Andersen, J. F. & Lukszo, J. Cyr61/CCN1 displays high-affinity binding to the somatomedin B1–44 domain of vitronectin. PLoS ONE 5, e9356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nishida, T. et al. Effect of CCN2 on FGF2-induced proliferation and MMP9 and MMP13 productions by chondrocytes. Endocrinology 152, 4232–4241 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Gellhaus, A. et al. Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J. Biol. Chem. 279, 36931–36942 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Fu, C. T., Bechberger, J. F., Ozog, M. A., Perbal, B. & Naus, C. C. CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J. Biol. Chem. 279, 36943–36950 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124, 601–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Su, J. L. et al. CYR61 regulates BMP-2-dependent osteoblast differentiation through the αvβ3 integrin/integrin-linked kinase/ERK pathway. J. Biol. Chem. 285, 31325–31336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wu, S. H., Lu, C., Dong, L. & Chen, Z. Q. Signal transduction involved in CTGF-induced production of chemokines in mesangial cells. Growth Factors 26, 192–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Canalis, E., Zanotti, S., Beamer, W. G., Economides, A. N. & Smerdel-Ramoya, A. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice. Endocrinology 151, 3490–3501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Doherty, H. E., Kim, H. S., Hiller, S., Sulik, K. K. & Maeda, N. A mouse strain where basal connective tissue growth factor gene expression can be switched from low to high. PLoS ONE 5, e12909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tong, Z. et al. Susceptibility to liver fibrosis in mice expressing a connective tissue growth factor transgene in hepatocytes. Hepatology 50, 939–947 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Watari, H., Xiong, Y., Hassan, M. K. & Sakuragi, N. Cyr61, a member of ccn (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family, predicts survival of patients with endometrial cancer of endometrioid subtype. Gynecol. Oncol. 112, 229–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Chien, W. et al. Cyr61 suppresses growth of human endometrial cancer cells. J. Biol. Chem. 279, 53087–53096 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Kikuchi, R. et al. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res. 67, 7095–7105 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Tong, X. et al. Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J. Biol. Chem. 276, 47709–47714 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. Dhar, G. et al. Loss of WISP-2/CCN5 signaling in human pancreatic cancer: a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett. 254, 63–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Ladwa, R., Pringle, H., Kumar, R. & West, K. Expression of CTGF and Cyr61 in colorectal cancer. J. Clin. Pathol. 64, 58–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Croci, S. et al. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells. Cancer Res. 64, 1730–1736 (2004).

    Article  CAS  PubMed  Google Scholar 

  210. Boag, J. M. et al. High expression of connective tissue growth factor in pre-B acute lymphoblastic leukaemia. Br. J. Haematol. 138, 740–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Bouchard, L. et al. CYR61 polymorphisms are associated with plasma HDL-cholesterol levels in obese individuals. Clin. Genet. 72, 224–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Fernandez-Rozadilla, C. et al. Colorectal cancer susceptibility quantitative trait loci in mice as a novel approach to detect low-penetrance variants in humans: a two-stage case-control study. Cancer Epidemiol. Biomarkers Prev. 19, 619–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Dessein, A. et al. Variants of CTGF are associated with hepatic fibrosis in Chinese, Sudanese, and Brazilians infected with schistosomes. J. Exp. Med. 206, 2321–2328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cozzolino, M. et al. CCN2 (CTGF) gene polymorphism is a novel prognostic risk factor for cardiovascular outcomes in hemodialysis patients. Blood Purif. 30, 272–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Ortlepp, J. R. et al. The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis. Eur. Heart J. 25, 514–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Wang, B. et al. Genetic variant in the promoter of connective tissue growth factor gene confers susceptibility to nephropathy in type 1 diabetes. J. Med. Genet. 47, 391–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Yamada, Y., Ando, F. & Shimokata, H. Association of polymorphisms of SORBS1, GCK and WISP1 with hypertension in community-dwelling Japanese individuals. Hypertens. Res. 32, 325–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Urano, T. et al. Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women. J. Bone Miner. Metab. 25, 253–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Thorstensen, L. et al. WNT1 inducible signaling pathway protein 3, WISP-3, a novel target gene in colorectal carcinomas with microsatellite instability. Gastroenterology 121, 1275–1280 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Lamb, R., Thomson, W., Ogilvie, E. & Donn, R. Wnt-1-inducible signaling pathway protein 3 and susceptibility to juvenile idiopathic arthritis. Arthritis Rheum. 52, 3548–3553 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose primary papers were not cited owing to space constraints. This work was supported in part by grants to L.F.L. from the US National Institutes of Health (AR61791, GM78492 and HL81390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester F. Lau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Lester F. Lau's homepage

ClinicalTrials.gov website

Excaliard Pharmaceuticals — 10 January 2011 press release

Galena BioPharma — 7 September 2011 press release

The International CCN Society website

Glossary

Matricellular proteins

Dynamically expressed extracellular matrix proteins with a modular structure that have regulatory roles and are often involved in wound healing.

Matrix metalloproteinases

Members of a family of >20 zinc-dependent endopeptidases that are involved in the degradation of extracellular matrix proteins, cleavage of cell-surface receptors, release of apoptotic ligands, and activation of chemokines and cytokines.

Integrins

Members of a family of heterodimeric cell-surface signalling receptors that mediate cell–cell and cell–matrix interactions; they are composed of 18 α-subunits and 8 β-subunits, which constitute 24 known integrin heterodimers in mammals.

Immediate-early genes

Genes that are transcriptionally activated with rapid kinetics, without requiring de novo protein synthesis, by a range of stimuli including viral infection or various extracellular signals.

Low-density lipoprotein receptor-related protein

Members of this family of proteins are cell-surface receptors that bind a broad spectrum of ligands, facilitating endocytosis and the signalling of associated receptors.

Anoikis

Induction of programmed cell death by detachment of cells from the extracellular matrix.

Cellular senescence

A state of irreversible cell cycle arrest induced by various forms of cellular stresses including DNA damage, oncogene activation, oxidative stress, chromatin disruption and telomere erosion.

Senescence-associated secretory phenotype

A phenotype that is one of the characteristics of senescent cells and includes increased secretion of inflammatory cytokines and matrix-degrading enzymes, as well as downregulation of extracellular matrix proteins such as collagen.

Chondrocytes

Connective tissue cells that produce the cartilaginous matrix, including type II collagen and proteoglycans, and reside within the lacuna of the cartilage matrix.

Osteoblasts

Mononucleate cells that are responsible for bone formation. They produce osteoid, which is composed mainly of type I collagen, and are responsible for mineralization of the osteoid matrix.

Atrioventricular septal defects

A form of congenital heart defect in which the heart chambers are poorly formed as a result of impairments in the endocardial cushions, which contribute to the formation of the atrial and ventricular septa, as well as the mitral and tricuspid valves.

Platelet α-granules

Cytoplasmic granules containing many protein factors that are involved in inflammation and wound repair. They are synthesized predominantly in megakaryocytes and include cell-adhesive proteins, growth and coagulation factors, and protease inhibitors, which are released following platelet activation at sites of vessel injury.

Epithelial-to-mesenchymal transition

A process — typically involving repression of E-cadherin expression — in which epithelial cells lose their adhesive properties and gain mobility. This transition is essential for many developmental processes and occurs during oncogenic transformation.

Microalbuminuria

A condition in which small amounts of albumin leak into the urine following injury or damage to the kidney, which is indicative of abnormal permeability in the renal glomerulus.

Balloon angioplasty

A method of mechanically widening a blood vessel that has typically been obstructed as a result of atherosclerosis. The method involves passing a collapsed balloon catheter through the obstructed area and inflating the balloon to open up the blood vessel as the catheter is withdrawn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, JI., Lau, L. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10, 945–963 (2011). https://doi.org/10.1038/nrd3599

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3599

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer