Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning?

Key Points

  • The search for novel drugs for psychiatric disorders is driven by the growing medical need to improve on the effectiveness and side-effect profile of currently available therapies.

  • The rapid advances in understanding the structure and regulation of genes encoding neuropeptides, the characterization of their receptors, the synthesis of non-peptide receptor ligands and the wealth of animal data have made neuropeptide receptors attractive therapeutic targets for the treatment of psychiatric disorders.

  • However, clinical studies with synthetic neuropeptide ligands have been unable to confirm the promise predicted by animal studies.

  • In this Review, we analyse preclinical and clinical results for neuropeptide receptor ligands that have been studied in clinical trials for psychiatric diseases, including agents that target the receptors for tachykinins, corticotropin-releasing factor, vasopressin and neurotensin, and suggest new ways to exploit the full potential of these candidate drugs.

  • Although drugs targeting neuropeptide receptors have not met their expectations, we do not believe that the whole concept should be considered a failure.

  • Among the most commonly noted reasons for the failure to successfully develop neuropeptide receptor ligands for psychiatric disorders is the poor predictivity of the animal models that have been used to screen these molecules. Drug selection based on data from animal models must be much more stringent and use a variety of models assessing different aspects of the disease.

  • The future development of drugs targeting neuropeptide receptors also has to bear in mind the specificity of their mechanism of action. Genetic tests and biomarkers are needed to identify subgroups of patients in whom a specific neuropeptidergic mechanism accounts for the clinical condition and who would thus be anticipated to benefit from a specific drug intervention.

Abstract

The search for novel drugs for treating psychiatric disorders is driven by the growing medical need to improve on the effectiveness and side-effect profile of currently available therapies. Given the wealth of preclinical data supporting the role of neuropeptides in modulating behaviour, pharmaceutical companies have been attempting to target neuropeptide receptors for over two decades. However, clinical studies with synthetic neuropeptide ligands have been unable to confirm the promise predicted by studies in animal models. Here, we analyse preclinical and clinical results for neuropeptide receptor ligands that have been studied in clinical trials for psychiatric diseases, including agents that target the receptors for tachykinins, corticotropin-releasing factor, vasopressin and neurotensin, and suggest new ways to exploit the full potential of these candidate drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurokinin, corticotropin-releasing factor, vasopressin and neurotensin pathways (and their receptors) in regions of the rat brain.
Figure 2: Outcome of experiments that investigated the effects of synthetic neurokinin receptor, CRFR1 and V1B receptor antagonists in animal models of anxiety from 1990 to 2011.

Similar content being viewed by others

References

  1. Kramer, M. S. et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640–1645 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Belzung, C., Yalcin, I., Griebel, G., Surget, A. & Leman, S. Neuropeptides in psychiatric diseases: an overview with a particular focus on depression and anxiety disorders. CNS Neurol. Disord. Drug Targets 5, 135–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Griebel, G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol. Ther. 82, 1–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Steckler, T. Developing small molecule nonpeptidergic drugs for the treatment of anxiety disorders: is the challenge still ahead? Curr. Top. Behav. Neurosci. 2, 415–428 (2010).

    Article  PubMed  Google Scholar 

  5. Herranz, R. Cholecystokinin antagonists: pharmacological and therapeutic potential. Med. Res. Rev. 23, 559–605 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Turiault, M., Cohen, C. & Griebel, G. in Encyclopedia of Psychopharmacology (ed. Stolerman, I. P.) 1301–1303 (Springer-Verlag 2010).

    Book  Google Scholar 

  7. Regoli, D., Boudon, A. & Fauchere, J. L. Receptors and antagonists for substance P and related peptides. Pharmacol. Rev. 46, 551–599 (1994).

    CAS  PubMed  Google Scholar 

  8. Rigby, M., O'Donnell, R. & Rupniak, N. M. Species differences in tachykinin receptor distribution: further evidence that the substance P (NK1) receptor predominates in human brain. J. Comp. Neurol. 490, 335–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Beaujouan, J. C., Torrens, Y., Saffroy, M., Kemel, M. L. & Glowinski, J. A 25 year adventure in the field of tachykinins. Peptides 25, 339–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Varty, G. B. et al. The gerbil elevated plus-maze II: anxiolytic-like effects of selective neurokinin NK1 receptor antagonists. Neuropsychopharmacology 27, 371–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Varty, G. B., Morgan, C. A., Cohen-Williams, M. E., Coffin, V. L. & Carey, G. J. The gerbil elevated plus-maze I: behavioral characterization and pharmacological validation. Neuropsychopharmacology 27, 357–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Marco, N. et al. Activation of dopaminergic and cholinergic neurotransmission by tachykinin NK3 receptor stimulation: an in vivo microdialysis approach in guinea pig. Neuropeptides 32, 481–488 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Snider, R. M. et al. A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251, 435–437 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Herpfer, I. & Lieb, K. Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential. CNS Drugs 19, 275–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ebner, K. & Singewald, N. The role of substance P in stress and anxiety responses. Amino Acids 31, 251–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Gobbi, G. & Blier, P. Effect of neurokinin-1 receptor antagonists on serotoninergic, noradrenergic and hippocampal neurons: comparison with antidepressant drugs. Peptides 26, 1383–1393 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kramer, M. S. et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 29, 385–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Chappell, P. Effect of CP-122,721, a selective NK-1 receptor antagonist, in patients with MDD. In: Proceedings of the 42nd Annual Meeting of the New Clinical Drug Evaluation Unit (Boca Raton, Florida, 2002).

    Google Scholar 

  19. Ratti, E. et al. Results from 2 randomized, double-blind, placebo-controlled studies of the novel NK1 receptor antagonist casopitant in patients with major depressive disorder. J. Clin. Psychopharmacol. 31, 727–733 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Keller, M. et al. Lack of efficacy of the substance P (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol. Psychiatry 59, 216–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, K. S. et al. Is bigger better for depression trials? J. Psychiatr. Res. 42, 622–630 (2008).

    Article  PubMed  Google Scholar 

  22. Ratti, E. et al. Results from 2 randomized, double-blind, placebo-controlled studies of the novel NK1 receptor antagonist casopitant in patients with major depressive disorder. J. Clin. Psychopharmacol. 31, 727–733 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Liebowitz, M., Sheehan, D., Melia, L. A. & Siffert, J. Safety and efficacy of AV608 in subjects with social anxiety disorder. In: Proceedings of the 47th Annual Meeting of the New Clinical Drug Evaluation Unit (Boca Raton, Florida, 2007).

    Google Scholar 

  24. Tauscher, J. et al. Development of the 2nd generation neurokinin-1 receptor antagonist LY686017 for social anxiety disorder. Eur. Neuropsychopharmacol. 20, 80–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Mathew, S. J. et al. A selective neurokinin-1 receptor antagonist in chronic PTSD: a randomized, double-blind, placebo-controlled, proof-of-concept trial. Eur. Neuropsychopharmacol. 21, 221–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Rupniak, N. M. & Kramer, M. S. Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol. Sci. 20, 485–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ebner, K., Sartori, S. B. & Singewald, N. Tachykinin receptors as therapeutic targets in stress-related disorders. Curr. Pharm. Des. 15, 1647–1674 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Pringle, A. et al. Short-term NK1 receptor antagonism and emotional processing in healthy volunteers. Psychopharmacology (Berl.) 215, 239–246 (2011).

    Article  CAS  Google Scholar 

  29. Chandra, P. et al. NK1 receptor antagonism and emotional processing in healthy volunteers. J. Psychopharmacol. 24, 481–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. McCabe, C., Cowen, P. J. & Harmer, C. J. NK1 receptor antagonism and the neural processing of emotional information in healthy volunteers. Int. J. Neuropsychopharmacol. 12, 1261–1274 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Emonds-Alt, X. et al. A potent and selective non-peptide antagonist of the neurokinin A (NK2) receptor. Life Sci. 50, PL101–PL106 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Steinberg, R. et al. Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J. Pharmacol. Exp. Ther. 299, 449–458 (2001).

    CAS  PubMed  Google Scholar 

  33. Louis, C. et al. Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an antagonist at the neurokinin-2 receptor in various rodent-models. Pharmacol. Biochem. Behav. 89, 36–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Overstreet, D. H., Naimoli, V. M. & Griebel, G. Saredutant, an NK2 receptor antagonist, has both antidepressant-like effects and synergizes with desipramine in an animal model of depression. Pharmacol. Biochem. Behav. 96, 206–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Griebel, G., Perrault, G. & Soubrie, P. Effects of SR48968, a selective non-peptide NK2 receptor antagonist on emotional processes in rodents. Psychopharmacology 158, 241–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Emonds-Alt, X. et al. SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci. 56, L27–L32 (1995).

    Google Scholar 

  37. Dawson, L. A. & Smith, P. W. Therapeutic utility of NK3 receptor antagonists for the treatment of schizophrenia. Curr. Pharm. Des. 16, 344–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Juhl, K. et al. Identification of a new series of non-peptidic NK3 receptor antagonists. Bioorg. Med.Chem. Lett. 21, 1498–1501 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Simonsen, K. B., Juhl, K., Steiniger-Brach, B. & Nielsen, S. M. Novel NK3 receptor antagonists for the treatment of schizophrenia and other CNS indications. Curr. Opin. Drug Discov. Devel. 13, 379–388 (2010).

    CAS  PubMed  Google Scholar 

  40. Malherbe, P., Ballard, T. M. & Ratni, H. Tachykinin neurokinin 3 receptor antagonists: a patent review (2005–2010). Expert. Opin. Ther. Pat. 21, 637–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Griebel, G. & Beeske, S. Is there still a future for neurokinin 3 receptor antagonists as potential drugs for the treatment of psychiatric diseases? Pharmacol. Ther. 133, 116–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Spooren, W., Riemer, C. & Meltzer, H. NK3 receptor antagonists: the next generation of antipsychotics? Nature Rev. Drug Discov. 4, 967–975 (2005).

    Article  CAS  Google Scholar 

  43. Meltzer, H. Y., Arvanitis, L., Bauer, D. & Rein, W. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am. J. Psychiatry 161, 975–984 (2004).

    Article  PubMed  Google Scholar 

  44. Evangelista, S. Talnetant GlaxoSmithKline. Curr. Opin. Investig. Drugs 6, 717–721 (2005).

    CAS  PubMed  Google Scholar 

  45. Liem-Moolenaar, M. et al. Psychomotor and cognitive effects of a single oral dose of talnetant (SB223412) in healthy volunteers compared with placebo or haloperidol. J. Psychopharmacol. 24, 73–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Vale, W. W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41 residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and β-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Hauger, R. L. et al. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol. Rev. 55, 21–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Chalmers, D. T., Lovenberg, T. W. & De Souza, E. B. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15, 6340–6350 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gehlert, D. R. et al. Stress and central urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor. Eur. J. Pharmacol. 509, 145–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. De Souza, E. B. Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20, 789–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Reul, J. M. & Holsboer, F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2, 23–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Behan, D. P. et al. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol. Psychiatr. 1, 265–277 (1996).

    CAS  Google Scholar 

  53. Hauger, R. L., Risbrough, V., Brauns, O. & Dautzenberg, F. M. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol. Disord. Drug Targets 5, 453–479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Refojo, D. et al. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc. Natl Acad. Sci. USA 102, 6183–6188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zobel, A. W. et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res. 34, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosci. 13, 1161–1169 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Paykel, E. S. Contribution of life events to causation of psychiatric illness. Psychol. Med. 8, 245–253 (1978).

    Article  CAS  PubMed  Google Scholar 

  58. Kendler, K. S., Karkowski, L. M. & Prescott, C. A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatr. 156, 837–841 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Hammen, C. Stress and depression. Annu. Rev. Clin. Psychol. 1, 293–319 (2005).

    Article  PubMed  Google Scholar 

  60. Kimura, M. et al. Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol. Psychiatry 15, 154–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Lu, A. et al. Conditional CRH overexpressing mice: an animal model for stress-elicited pathologies and treatments that target the central CRH system. Mol. Psychiatry 13, 989 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Lauer, C. J., Schreiber, W., Holsboer, F. & Krieg, J. C. In quest of identifying vulnerability markers for psychiatric disorders by all-night polysomnography. Arch. Gen. Psychiatry 52, 145–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Held, K. et al. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression. J. Psychiatr. Res. 38, 129–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Holsboer, F. & Ising, M. Stress hormone regulation: biological role and translation into therapy. Annu. Rev. Psychol. 61, 81–109 (2010).

    Article  PubMed  Google Scholar 

  65. Keck, M. E. et al. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 1196–1204 (2008).

    Article  PubMed  Google Scholar 

  66. Landgraf, R. The involvement of the vasopressin system in stress-related disorders. CNS Neurol. Disord. Drug Targets 5, 167–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Keck, M. E. Corticotropin-releasing factor, vasopressin and receptor systems in depression and anxiety. Amino Acids 31, 241–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Licinio, J. et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol. Psychiatry 9, 1075–1082 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Z. et al. Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci. Lett. 404, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Binder, E. B. et al. Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Arch. Gen. Psychiatry 67, 369–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Dong, C., Wong, M. L. & Licinio, J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol. Psychiatry 14, 1105–1118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bradley, R. G. et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch. Gen. Psychiatry 65, 190–200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Polanczyk, G. et al. Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch. Gen. Psychiatry 66, 978–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grabe, H. J. et al. Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 1483–1493 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Tyrka, A. R. et al. Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: effects on hypothalamic–pituitary–adrenal axis reactivity. Biol. Psychiatry 66, 681–685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neurosci. 12, 1559–1566 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nature Neurosci. 13, 1351–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Spengler, D., Rupprecht, R., Van, L. P. & Holsboer, F. Identification and characterization of a 3′,5′-cyclic adenosine monophosphate-responsive element in the human corticotropin-releasing hormone gene promoter. Mol. Endocrinol. 6, 1931–1941 (1992).

    CAS  PubMed  Google Scholar 

  79. Grunder, G., Hiemke, C., Paulzen, M., Veselinovic, T. & Vernaleken, I. Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging. Pharmacopsychiatry 44, 236–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Sullivan, G. M. et al. PET Imaging of CRF1 with [11C]R121920 and [11C]DMP696: is the target of sufficient density? Nucl. Med. Biol. 34, 353–361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uhr, M. et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57, 203–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Ising, M. et al. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32, 1941–1949 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. McCann, S. M. & Brobeck, J. R. Evidence for a role of the supraopticohypophyseal system in the regulation of adrenocorticotropin secretion. Proc. Natl Acad. Sci. USA 87, 318–324 (1954).

    CAS  Google Scholar 

  84. Antoni, F. A. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front. Neuroendocrinol. 14, 76–122 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Aguilera, G. Regulation of pituitary ACTH secretion during chronic stress. Front. Neuroendocrinol. 15, 321–350 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Engelmann, M., Wotjak, C. T., Neumann, I., Ludwig, M. & Landgraf, R. Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci. Biobehav. Rev. 20, 341–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Caffé, A. R., van Leeuwen, F. W. & Luiten, P. G. M. Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J. Comp. Neurol. 261, 237–252 (1987).

    Article  PubMed  Google Scholar 

  88. De Vries, G. J. & Buijs, R. M. The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 273, 307–317 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. van Leeuwen, F. W. & Caffé, A. R. Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat. Cell Tissue Res. 28, 525–534 (1983).

    Article  Google Scholar 

  90. Lolait, S. J. et al. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl Acad. Sci. USA 92, 6783–6787 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Young, L. J., Toloczko, D. & Insel, T. R. Localization of vasopressin (V1a) receptor binding and mRNA in the rhesus monkey brain. J. Neuroendocrinol. 11, 291–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Vaccari, C., Lolait, S. J. & Ostrowski, N. L. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139, 5015–5033 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Morel, A., O'Carroll, A. M., Brownstein, M. J. & Lolait, S. J. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 356, 523–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Tribollet, E., Raufaste, D., Maffrand, J. & Serradeil-Le Gal, C. Binding of the non-peptide vasopressin V1a receptor antagonist SR-49059 in the rat brain: an in vitro and in vivo autoradiographic study. Neuroendocrinology 69, 113–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Stemmelin, J., Lukovic, L., Salome, N. & Griebel, G. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30, 35–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Aguilera, G. & Rabadan-Diehl, C. Vasopressinergic regulation of the hypothalamic–pituitary–adrenal axis: implications for stress adaptation. Regul. Pept. 96, 23–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Abelson, J. L., Le Mellédo, J. M. & Bichet, D. G. Dose response of arginine vasopressin to the CCK-B agonist pentagastrin. Neuropsychopharmacology 24, 161–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Purba, J. S., Hoogendijk, W. J. G., Hofman, M. A. & Swaab, D. F. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry 53, 137–143 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, J. N. et al. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch. Gen. Psychiatry 58, 655–662 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. van Londen, L. et al. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 17, 284–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Gjerris, A., Hammer, M., Vendsborg, P., Christensen, N. J. & Rafaelsen, O. J. Cerebrospinal fluid vasopressin — changes in depression. Br. J. Psychiatry 147, 696–701 (1985).

    Article  CAS  PubMed  Google Scholar 

  102. Altemus, M. et al. Abnormalities in the regulation of vasopressin and corticotropin releasing factor secretion in obsessive-compulsive disorder. Arch. Gen. Psychiatry 49, 9–20 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Holsboer, F. & Barden, N. Antidepressants and hypothalamic–pituitary–adrenocortical regulation. Endocrine Rev. 17, 187–205 (1996).

    Article  CAS  Google Scholar 

  104. Dinan, T. G. et al. Desmopressin normalizes the blunted adrenocorticotropin response to corticotropin-releasing hormone in melancholic depression: evidence of enhanced vasopressinergic responsivity. J. Clin. Endocrinol. Metab. 84, 2238–2240 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Griebel, G. et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl Acad. Sci. USA 99, 6370–6375 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gillies, G. E., Linton, E. A. & Lowry, P. J. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299, 355–357 (1982).

    Article  CAS  PubMed  Google Scholar 

  107. von Bardeleben, U., Holsboer, F., Stalla, G. K. & Muller, O. A. Combined administration of human corticotropin-releasing factor and lysine vasopressin induces cortisol escape from dexamethasone suppression in healthy subjects. Life Sci. 37, 1613–1618 (1985).

    Article  CAS  PubMed  Google Scholar 

  108. De Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  Google Scholar 

  109. Ising, M. et al. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression — a potential biomarker? Biol. Psychiatry 62, 47–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Schule, S. et al. Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS ONE 4, e7098 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hennings, J. M. et al. Clinical characteristics and treatment outcome in a representative sample of depressed inpatients — findings from the Munich Antidepressant Response Signature (MARS) project. J. Psychiatr. Res. 43, 215–229 (2009).

    Article  PubMed  Google Scholar 

  112. Paslakis, G. et al. Venlafaxine and mirtazapine treatment lowers serum concentrations of dehydroepiandrosterone-sulfate in depressed patients remitting during the course of treatment. J. Psychiatr. Res. 44, 556–560 (2010).

    Article  PubMed  Google Scholar 

  113. Serradeil-Le Gal, C. et al. Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist. J. Pharmacol. Exp. Ther. 300, 1122–1130 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Griebel, G., Stemmelin, J., Serradeil-Le Gal, C. & Soubrié, P. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr. Pharm. Des. 11, 1549–1559 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Roper, J., O'Carroll, A. M., Young, W. & Lolait, S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress 14, 98–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Craighead, M. et al. Characterization of a novel and selective V1B receptor antagonist. Prog. Brain Res. 170, 527–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Wernet, W. et al. In vitro characterization of the selective vasopressin V1b receptor antagonists ABT-436 and ABT-558. Program No. 560.16. 2008 Neuroscience Meeting Planner (Washington DC; Society for Neuroscience; 2008).

    Google Scholar 

  118. Carraway, R. & Leeman, S. E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248, 6854–6861 (1973).

    CAS  PubMed  Google Scholar 

  119. St Pierre, S. et al. Neurotensin, a multi-action peptide hormone. Union Med. Can. 109, 1447–1455 (1980).

    CAS  PubMed  Google Scholar 

  120. Caceda, R., Kinkead, B. & Nemeroff, C. B. Neurotensin: role in psychiatric and neurological diseases. Peptides 27, 2385–2404 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Kinkead, B. & Nemeroff, C. B. Novel treatments of schizophrenia: targeting the neurotensin system. CNS Neurol. Disord. Drug Targets 5, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Boules, M., Shaw, A., Fredrickson, P. & Richelson, E. Neurotensin agonists: potential in the treatment of schizophrenia. CNS Drugs 21, 13–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Tanaka, K., Masu, M. & Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4, 847–854 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Chalon, P. et al. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett. 386, 91–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Mazella, J. et al. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J. Biol. Chem. 273, 26273–26276 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Pettibone, D. J. et al. The effects of deleting the mouse neurotensin receptor NTR1 on central and peripheral responses to neurotensin. J. Pharmacol. Exp. Ther. 300, 305–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Boudin, H., Pelaprat, D., Rostene, W. & Beaudet, A. Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J. Comp. Neurol. 373, 76–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Elde, R., Schalling, M., Ceccatelli, S., Nakanishi, S. & Hokfelt, T. Localization of neuropeptide receptor mRNA in rat brain: initial observations using probes for neurotensin and substance P receptors. Neurosci. Lett. 120, 134–138 (1990).

    Article  CAS  PubMed  Google Scholar 

  129. Fassio, A. et al. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology 39, 1430–1442 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Alexander, M. J. & Leeman, S. E. Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J. Comp. Neurol. 402, 475–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Boules, M. et al. Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neuroleptic-like properties. Brain Res. 919, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Tyler, B. M. et al. In vitro binding and CNS effects of novel neurotensin agonists that cross the blood–brain barrier. Neuropharmacology 38, 1027–1034 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Tyler-McMahon, B. M., Stewart, J. A., Farinas, F., McCormick, D. J. & Richelson, E. Highly potent neurotensin analog that causes hypothermia and antinociception. Eur. J. Pharmacol. 390, 107–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Machida, R., Tokumura, T., Tsuchiya, Y., Sasaki, A. & Abe, K. Pharmacokinetics of novel hexapeptides with neurotensin activity in rats. Biol. Pharm. Bull. 16, 43–47 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Tokumura, T. et al. Stability of a novel hexapeptide, (Me)Arg-Lys-Pro-Trp-tert-Leu-Leu-OEt, with neurotensin activity, in aqueous solution and in the solid state. Chem. Pharm. Bull. (Tokyo) 38, 3094–3098 (1990).

    Article  CAS  Google Scholar 

  136. Michaud, J. C., Gueudet, C. & Soubrie, P. Effects of neurotensin receptor antagonists on the firing rate of rat ventral pallidum neurons. Neuroreport 11, 1437–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Richelson, E. NT69L: a neurotensin receptor agonist for treatment of neuropsychiatric diseases. Neuropsychopharmacology 30, S50 (2005).

    Google Scholar 

  138. Smith, K. Trillion-dollar brain drain. Nature 478, 15 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). (American Psychiatric Association, Washington DC, 2000).

  140. Holsboer, F. How can we realize the promise of personalized antidepressant medicines? Nature Rev. Neurosci. 9, 638–646 (2008).

    Article  CAS  Google Scholar 

  141. Kirsch, I. The Emperor's New Drugs: Exploring the Antidepressant Myth (Bodley Head, 2010).

    Google Scholar 

  142. Leucht, S., Heres, S. & Davis, J. M. Considerations about the efficacy of psychopharmacological drugs. Nervenarzt 82, 1425–1430 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Hokfelt, T., Bartfai, T. & Bloom, F. Neuropeptides: opportunities for drug discovery. Lancet Neurol. 2, 463–472 (2003).

    Article  PubMed  Google Scholar 

  144. Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. & Schultzberg, M. Peptidergic neurones. Nature 284, 515–521 (1980).

    Article  CAS  PubMed  Google Scholar 

  145. Refojo, D. et al. Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science 333, 1903–1907 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Edwards, T. C., Patrick, D. L. & Topolski, T. D. Quality of life of adolescents with perceived disabilities. J. Pediatr. Psychol. 28, 233–241 (2003).

    Article  PubMed  Google Scholar 

  147. Heim, C., Newport, D. J., Mletzko, T., Miller, A. H. & Nemeroff, C. B. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33, 693–710 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. McCauley, J. et al. Clinical characteristics of women with a history of childhood abuse: unhealed wounds. JAMA 277, 1362–1368 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Molnar, B. E., Buka, S. L. & Kessler, R. C. Child sexual abuse and subsequent psychopathology: results from the National Comorbidity Survey. Am. J. Public Health 91, 753–760 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23, 477–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Ising, M. et al. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1085–1093 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Raison, C. L. & Miller, A. H. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry 160, 1554–1565 (2003).

    Article  PubMed  Google Scholar 

  153. Nemeroff, C. B. The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry 21, 76–82 (1988).

    Article  CAS  PubMed  Google Scholar 

  154. Papiol, S. et al. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord. 104, 83–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Holsboer, F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res. 33, 181–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Chen, Y. et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc. Natl Acad. Sci. USA 107, 13123–13128 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Coplan, J. D. et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc. Natl Acad. Sci. USA 93, 1619–1623 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, X. D. et al. Forebrain CRF modulates early-life stress-programmed cognitive deficits. J. Neurosci. 31, 13625–13634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Brunson, K. L., Eghbal-Ahmadi, M., Bender, R., Chen, Y. & Baram, T. Z. Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc. Natl Acad. Sci. USA 98, 8856–8861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ivy, A. S. et al. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J. Neurosci. 30, 13005–13015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Muller, M. B. et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neurosci. 6, 1100–1107 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Kolber, B. J. et al. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J. Neurosci. 30, 2571–2581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Griebel, G., Perrault, G. & Sanger, D. J. Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology 138, 55–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Habib, K. E. et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc. Natl Acad. Sci. USA 97, 6079–6084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Brothers, S. P. & Wahlestedt, C. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol. Med. 2, 429–439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Civelli, O. The orphanin FQ/nociceptin (OFQ/N) system. Results Probl. Cell Differ. 46, 1–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Shimazaki, T., Yoshimizu, T. & Chaki, S. Melanin-concentrating hormone MCH1 receptor antagonists: a potential new approach to the treatment of depression and anxiety disorders. CNS Drugs 20, 801–811 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Chung, S. et al. The melanin-concentrating hormone (MCH) system modulates behaviors associated with psychiatric disorders. PLoS. ONE 6, e19286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Holmes, A., Heilig, M., Rupniak, N. M., Steckler, T. & Griebel, G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci. 24, 580–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Lang, R., Gundlach, A. L. & Kofler, B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Ther. 115, 177–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Striepens, N., Kendrick, K. M., Maier, W. & Hurlemann, R. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front. Neuroendocrinol. 32, 426–450 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Xu, Y. L. et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43, 487–497 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Ionescu, I. et al. Intranasally administered neuropeptide S (NPS) exerts anxiolytic effects following internalization into NPS receptor-expressing neurons. Neuropsychopharmacology 37, 1323–1337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Binneman, B. et al. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am. J. Psychiatry 165, 617–620 (2008).

    Article  PubMed  Google Scholar 

  175. Kirchhoff, V. D., Nguyen, H. T., Soczynska, J. K., Woldeyohannes, H. & McIntyre, R. S. Discontinued psychiatric drugs in 2008. Expert. Opin. Investig. Drugs 18, 1431–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Coric, V. et al. Multicenter, randomized, double-blind, active comparator and placebo-controlled trial of a corticotropin-releasing factor receptor-1 antagonist in generalized anxiety disorder. Depress. Anxiety 27, 417–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Griebel, G., Stahl, S. & Arvanitis, L. The V1b receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from three double-blind, placebo-controlled studies. Neuropsychopharmacology 36, S351 (2011).

    Google Scholar 

  178. Furmark, T. et al. Cerebral blood flow changes after treatment of social phobia with the neurokinin-1 antagonist GR205171, citalopram, or placebo. Biol. Psychiatry 58, 132–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Kronenberg, G. et al. Randomized, double-blind study of SR142801 (osanetant). A novel neurokinin-3 (NK3) receptor antagonist in panic disorder with pre- and posttreatment cholecystokinin tetrapeptide (CCK-4) challenges. Pharmacopsychiatry 38, 24–29 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Beeské and H. Junkert for their editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Griebel.

Ethics declarations

Competing interests

Florian Holsboer is cofounder of HMNC (HolsboerMaschmeyer NeuroChemie) GmbH, a biotechnology company aiming to develop new personalized treatments for treating depression.

Supplementary information

Supplementary Information, Table 1

Drugs in clinical development for the treatment of schizophrenia, anxiety and major depressive disorders as of November 2011 (PDF 150 kb)

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

GSK Clinical Study Register

Sanofi website — 28 April 2011 press release

Glossary

Hypothalamic–pituitary–adrenal axis

A tightly linked, interdependent endocrine structure that comprises a major peripheral part of the stress system, the main function of which is to maintain basal and stress-related homeostasis.

Neurogenesis

The growth and development of nerve tissues.

Cyclic AMP response element-binding protein

A cellular transcription factor that binds to certain DNA sequences called cyclic AMP response elements, thereby increasing or decreasing the transcription of downstream genes.

Forced swim test

A screening model of depression in rodents that measures immobility in a beaker half-filled with water as a measure of despair behaviour. This test has been widely used in the discovery of monoamine-based drugs because of its high predictive validity.

Limbic structures

Set of areas of the brain including the amygdala, anterior thalamic nuclei, fornix, hippocampus, limbic cortex and septum, which have a modulatory role in various functions including emotion, memory and olfaction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebel, G., Holsboer, F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning?. Nat Rev Drug Discov 11, 462–478 (2012). https://doi.org/10.1038/nrd3702

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing