Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Predicting drug metabolism: experiment and/or computation?

Abstract

Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shapes of cytochrome P450 binding pockets differ according to the class.

Similar content being viewed by others

References

  1. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Wienkers, L. C. & Heath, T. G. Predicting in vivo drug interactions from in vitro drug discovery data. Nature Rev. Drug Discov. 4, 825–833 (2005).

    Article  CAS  Google Scholar 

  3. Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol. 10, 379–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Testa, B. in Drug Metabolism Prediction (ed. Kirchmair, J.) 3–25 (Wiley-VCH, 2014).

    Google Scholar 

  5. Testa, B. Drug metabolism for the perplexed medicinal chemist. Chem. Biodivers. 6, 2055–2070 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kirchmair, J. et al. How do metabolites differ from their parent molecules and how are they excreted? J. Chem. Inf. Model. 53, 354–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Testa, B., Pedretti, A. & Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today 17, 549–560 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. van Waterschoot, R. A. B. & Schinkel, A. H. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol. Rev. 63, 390–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Thomas, S. & Dimelow, R. J. in Drug Metabolism Prediction (ed. Kirchmair, J.) 373–396 (Wiley-VCH, 2014).

    Google Scholar 

  10. Scheer, N. & Wolf, C. R. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica 44, 96–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Kitamura, S. & Sugihara, K. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver. Xenobiotica 44, 123–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Glube, N. D. & Duchateau, G. in Drug Metabolism Prediction (ed. Kirchmair, J.) 415–440 (Wiley-VCH, 2014).

    Google Scholar 

  13. Ferguson, S. & Bonzo, J. A. in Drug Metabolism Prediction (ed. Kirchmair, J.) 441–484 (Wiley-VCH, 2014).

    Google Scholar 

  14. Wilson, I. D. in Drug Metabolism Prediction (ed. Kirchmair, J.) 485–498 (Wiley-VCH, 2014).

    Google Scholar 

  15. Zhu, M. S., Zhang, H. Y. & Humphreys, W. G. Drug metabolite profiling and identification by high-resolution mass spectrometry. J. Biol. Chem. 286, 25419–25425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anari, M. R., Sanchez, R. I., Bakhtiar, R., Franklin, R. B. & Baillie, T. A. Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: application to studies on the biotransformation of indinavir. Anal. Chem. 76, 823–832 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Leclercq, L. et al. IsoScore: automated localization of biotransformations by mass spectrometry using product ion scoring of virtual regioisomers. Rapid Commun. Mass Spectrom. 23, 39–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Zamora, I., Fontaine, F., Serra, B. & Plasencia, G. High-throughput, computer assisted, specific MetID. A revolution for drug discovery. Drug Discov. Today Technol. 10, e199–e205 (2013).

    Article  PubMed  Google Scholar 

  19. Bonn, B., Leandersson, C., Fontaine, F. & Zamora, I. Enhanced metabolite identification with MSE and a semi-automated software for structural elucidation. Rapid Commun. Mass Spectrom. 24, 3127–3138 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Wishart, D. S. Advances in metabolite identification. Bioanalysis 3, 1769–1782 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Marchant, C. A., Briggs, K. A. & Long, A. In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicol. Mech. Method. 18, 177–187 (2008).

    Article  CAS  Google Scholar 

  22. Ridder, L. & Wagener, M. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem 3, 821–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs, P. L. et al. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing. Bioanalysis 5, 2115–2128 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Beisken, S., Earll, M., Portwood, D., Seymour, M. & Steinbeck, C. MassCascade: visual programming for LC-MS data processing in metabolomics. Mol. Inf. 33, 307–310 (2014).

    Article  CAS  Google Scholar 

  25. Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Giri, S., Krausz, K. W., Idle, J. R. & Gonzalez, F. J. The metabolomics of ±-arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases. Biochem. Pharmacol. 73, 561–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Athersuch, T. J., Nicholson, J. K. & Wilson, I. D. Isotopic enrichment enhancement in metabonomic analysis of UPLC-MS data sets. J. Labelled Compd. Radic. 50, 303–307 (2007).

    Article  CAS  Google Scholar 

  28. Wilson, I. D. in NMR Spectroscopy in Pharmaceutical Analysis (eds Holzgrabe, U., Wawer, I., & Diehl, B.) 449–469 (Elsevier, 2008).

    Book  Google Scholar 

  29. Chovan, L. E., Black-Schaefer, C., Dandliker, P. J. & Lau, Y. Y. Automatic mass spectrometry method development for drug discovery: application in metabolic stability assays. Rapid Commun. Mass Spectrom. 18, 3105–3112 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Jenkins, K. M. et al. Automated high throughput ADME assays for metabolic stability and cytochrome P450 inhibition profiling of combinatorial libraries. J. Pharmaceut. Biomed. 34, 989–1004 (2004).

    Article  CAS  Google Scholar 

  31. Youdim, K. A. & Saunders, K. C. A review of LC-MS techniques and high-throughput approaches used to investigate drug metabolism by cytochrome P450s. J. Chromatograph. B 878, 1326–1336 (2010).

    Article  CAS  Google Scholar 

  32. Ma, S. & Zhu, M. Recent advances in applications of liquid chromatography–tandem mass spectrometry to the analysis of reactive drug metabolites. Chem. Biol. Interact. 179, 25–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, Z., Caldwell, G. W. & Maher, N. Unbiased high-throughput screening of reactive metabolites on the linear ion trap mass spectrometer using polarity switch and mass tag triggered data-dependent acquisition. Anal. Chem. 80, 6410–6422 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Tan, L. & Kirchmair, J. in Drug Metabolism Prediction (ed. Kirchmair, J.) 29–51 (Wiley-VCH, 2014).

    Google Scholar 

  35. Wishart, D. S. in Drug Metabolism Prediction (ed. Kirchmair, J.) 53–74 (Wiley-VCH, 2014).

    Google Scholar 

  36. Ekins, S., Mestres, J. & Testa, B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br. J. Pharmacol. 152, 9–20 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Phuangsawai, O., Hannongbua, S. & Gleeson, M. P. in Drug Metabolism Prediction (ed. Kirchmair, J.) 321–349 (Wiley-VCH, 2014).

    Google Scholar 

  38. Koutsoukas, A. et al. From In silico target prediction to multi-target drug design: current databases, methods and applications. J. Proteomics 74, 2554–2574 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Gleeson, M. P. et al. The challenges involved in modeling toxicity data in silico: a review. Curr. Pharm. Des. 18, 1266–1291 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Tiikkainen, P., Bellis, L., Light, Y. & Franke, L. Estimating error rates in bioactivity databases. J. Chem. Inf. Model. 53, 2499–2505 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Testa, B. Organic stereochemistry. Part 7: the concept of substrate stereoselectivity in biochemistry and xenobiotic metabolism. Helv. Chim. Acta 96, 1203–1234 (2013).

    Article  CAS  Google Scholar 

  42. Testa, B. Organic stereochemistry. Part 8: prostereoisomerism and the concept of product stereoselectivity in biochemistry and xenobiotic metabolism. Helv. Chim. Acta 96, 1409–1451 (2013).

    Article  CAS  Google Scholar 

  43. Kirchmair, J. et al. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J. Chem. Inf. Model. 52, 617–648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaserer, T., Temml, V. & Schuster, D. in Drug Metabolism Prediction (ed. Kirchmair, J.) 351–372 (Wiley-VCH, 2014).

    Google Scholar 

  45. Bender, A. in Drug Metabolism Prediction (ed. Kirchmair, J.) 397–411 (Wiley-VCH, 2014).

    Google Scholar 

  46. Ekins, S. et al. A combined approach to drug metabolism and toxicity assessment. Drug Metab. Dispos. 34, 495–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ekins, S. et al. Algorithms for network analysis in systems-ADME/tox using the MetaCore and MetaDrug platforms. Xenobiotica 36, 877–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Adams, S. E. Molecular Similarity and Xenobiotic Metabolism. Thesis, Univ. Cambridge (2010).

    Google Scholar 

  49. Judson, P. N. in Drug Metabolism Prediction (ed. Kirchmair, J.) 293–318 (Wiley-VCH, 2014).

    Google Scholar 

  50. Stepan, A. F. et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem. Res. Toxicol. 24, 1345–1410 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. US Food & Drug Administration. Guidance for Industry: Genotoxic and Carcinogenic Impuritiesin Drug Substances and Products: Recommended Approaches (FDA, 2008).

  52. Williams, P. A. et al. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424, 464–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Leach, A. G. & Kidley, N. J. in Drug Metabolism Prediction (ed. Kirchmair, J.) 103–132 (Wiley-VCH, 2014).

    Google Scholar 

  54. Oostenbrink, C. in Drug Metabolism Prediction (ed. Kirchmair, J.) 243–263 (Wiley-VCH, 2014).

    Google Scholar 

  55. Sykes, M. J., McKinnon, R. A. & Miners, J. O. Prediction of metabolism by cytochrome P450 2C9: alignment and docking studies of a validated database of substrates. J. Med. Chem. 51, 780–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Warren, G. L. et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49, 5912–5931 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Goodford, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Broccatelli, F. & Brown, N. in Drug Metabolism Prediction (ed. Kirchmair, J.) 223–242 (Wiley-VCH, 2014).

    Google Scholar 

  59. Cruciani, G. et al. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem. 48, 6970–6979 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Mustafa, G., Yu, X. & Wade, R. C. in Drug Metabolism Prediction (ed. Kirchmair, J.) 77–101 (Wiley-VCH, 2014).

    Google Scholar 

  61. Shaik, S., Chen, H., Usharani, D. & Thiel, W. in Drug Metabolism Prediction (ed. Kirchmair, J.) 133–177 (Wiley-VCH, 2014).

    Google Scholar 

  62. Berka, K. et al. Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J. Inorg. Biochem. 110, 46–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Porubsky, P. R., Battaile, K. P. & Scott, E. E. Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J. Biol. Chem. 285, 22282–22290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Skopaliík, J., Anzenbacher, P. & Otyepka, M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J. Chem. Phys. B 112, 8165–8173 (2008).

    Article  CAS  Google Scholar 

  65. Hendrychova, T., Berka, K., Navratilova, V., Anzenbacher, P. & Otyepka, M. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr. Drug Metab. 13, 177–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Cojocaru, V., Winn, P. J. & Wade, R. C. Multiple, ligand-dependent routes from the active site of cytochrome P450 2C9. Curr. Drug Metab. 13, 143–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Cojocaru, V., Winn, P. J. & Wade, R. C. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta 1770, 390–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Grubmuller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin biotin rupture force. Science 271, 997–999 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Ludemann, S. K., Lounnas, V. & Wade, R. C. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J. Mol. Biol. 303, 797–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22, 1420 (1954).

    Article  CAS  Google Scholar 

  71. Kirkwood, J. G. Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300–313 (1935).

    Article  CAS  Google Scholar 

  72. Bennett, C. H. Efficient estimation of free-energy differences from Monte-Carlo data. J. Comput. Phys. 22, 245–268 (1976).

    Article  Google Scholar 

  73. Williamson, M. J. in Drug Metabolism Prediction (ed. Kirchmair, J.) 179–197 (Wiley-VCH, 2014).

    Google Scholar 

  74. Aqvist, J., Medina, C. & Samuelsson, J. E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 7, 385–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Jacobsen, W. et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab. Dispos. 28, 1369–1378 (2000).

    CAS  PubMed  Google Scholar 

  76. de Beer, S. B. A., Venkataraman, H., Geerke, D. P., Oostenbrink, C. & Vermeulen, N. P. E. Free energy calculations give insight into the stereoselective hydroxylation of α-ionones by engineered cytochrome P450 BM3 mutants. J. Chem. Inf. Model. 52, 2139–2148 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Nagy, G. & Oostenbrink, C. Rationalization of stereospecific binding of propranolol to cytochrome P450 2D6 by free energy calculations. Eur. Biophys. J. 41, 1065–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Götz, A. W. et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theor. Comput. 8, 1542–1555 (2012).

    Article  CAS  Google Scholar 

  79. Amaro, R. E. & Li, W. W. Emerging methods for ensemble-based virtual screening. Curr. Top. Med. Chem. 10, 3–13 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rydberg, P., Rostkowski, M., Gloriam, D. E. & Olsen, L. The contribution of atom accessibility to site of metabolism models for cytochromes P450. Mol. Pharm. 10, 1216–1223 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Korzekwa, K. R., Jones, J. P. & Gillette, J. R. Theoretical studies on cytochrome P-450 mediated hydroxylation: a predictive model for hydrogen atom abstractions. J. Am. Chem. Soc. 112, 7042–7046 (1990).

    Article  CAS  Google Scholar 

  82. Warshel, A. & Levitt, M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976).

    Article  CAS  PubMed  Google Scholar 

  83. Shaik, S. et al. P450 enzymes: their structure, reactivity, and selectivity — modeled by QM/MM calculations. Chem. Rev. 110, 949–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Lonsdale, R., Hoyle, S., Grey, D. T., Ridder, L. & Mulholland, A. J. Determinants of reactivity and selectivity in soluble epoxide hydrolase from quantum mechanics/molecular mechanics modeling. Biochemistry 51, 1774–1786 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Ridder, L., Rietjens, I. M. C. M., Vervoort, J. & Mulholland, A. J. Quantum mechanical/molecular mechanical free energy simulations of the glutathione S-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J. Am. Chem. Soc. 124, 9926–9936 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Bowman, A. L., Ridder, L., Rietjens, I. M. C. M., Vervoort, J. & Mulholland, A. J. Molecular determinants of xenobiotic metabolism: QM/MM simulation of the conversion of 1-chloro-2,4-dinitrobenzene catalyzed by M1-1 glutathione S-transferase. Biochemistry 46, 6353–6363 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Gordon, M. S., Fedorov, D. G., Pruitt, S. R. & Slipchenko, L. V. Fragmentation methods: a route to accurate calculations on large systems. Chem. Rev. 112, 632–672 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theor. Comput. 5, 2619–2628 (2009).

    Article  CAS  Google Scholar 

  89. Hennemann, M. et al. CypScore: quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory. ChemMedChem. 4, 657–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Singh, S. B., Shen, L. Q., Walker, M. J. & Sheridan, R. P. A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. J. Med. Chem. 46, 1330–1336 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Kirchmair, J. et al. FAst MEtabolizer (FAME): a rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. J. Chem. Inf. Model. 53, 2896–2907 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Zaretzki, J. et al. RS-Predictor: a new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4. J. Chem. Inf. Model. 51, 1667–1689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guengerich, F. P. in Drug Metabolism Prediction (ed. Kirchmair, J.) 199–219 (Wiley-VCH, 2014).

    Google Scholar 

  94. Rydberg, P. in Drug Metabolism Prediction (ed. Kirchmair, J.) 265–291 (Wiley-VCH, 2014).

    Google Scholar 

  95. Reker, D., Rodrigues, T., Schneider, P. & Schneider, G. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc. Natl Acad. Sci. USA 111, 4067–4072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meslamani, J., Bhajun, R., Martz, F. & Rognan, D. Computational profiling of bioactive compounds using a target-dependent composite workflow. J. Chem. Inf. Model. 53, 2322–2333 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Tarcsay, Á., Kiss, R. & Keseru, G. M. Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach. J. Comput. Aided Mol. Des. 24, 399–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Rydberg, P. & Olsen, L. Ligand-based site of metabolism prediction for cytochrome P450 2D6. ACS Med. Chem. Lett. 3, 69–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Rydberg, P. & Olsen, L. Predicting drug metabolism by cytochrome P450 2C9: comparison with the 2D6 and 3A4 isoforms. ChemMedChem. 7, 1202–1209 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Sivaraman, A. et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. van Midwoud, P. M., Verpoorte, E. & Groothuis, G. M. M. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. 3, 509 (2011).

    Article  CAS  Google Scholar 

  102. Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nature Biotech. 26, 120–126 (2007).

    Article  CAS  Google Scholar 

  103. Rainville, P. D., Smith, N. W., Wilson, I. D., Nicholson, J. K. & Plumb, R. S. Addressing the challenge of limited sample volumes in in vitro studies with capillary-scale microfluidic LC–MS/MS. Bioanalysis 3, 873–882 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Dear, G. J. et al. Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun. Mass Spectrom. 24, 3157–3162 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Shimizu, A. & Chiba, M. Ion mobility spectrometry-mass spectrometry analysis for the site of aromatic hydroxylation. Drug Metab. Dispos. 41, 1295–1299 (2013).

    Article  PubMed  CAS  Google Scholar 

  106. Bodor, N. & Buchwald, P. Soft drug design: general principles and recent applications. Med. Res. Rev. 20, 58–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Rautio, J. et al. Prodrugs: design and clinical applications. Nature Rev. Drug Discov. 7, 255–270 (2008).

    Article  CAS  Google Scholar 

  108. Smith, D. A. Do prodrugs deliver? Curr. Opin. Drug Disc. 10, 550–559 (2007).

    CAS  Google Scholar 

  109. Testa, B. Prodrugs: bridging pharmacodynamic/pharmacokinetic gaps. Curr. Opin. Chem. Biol. 13, 338–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Huttunen, K. M., Raunio, H. & Rautio, J. Prodrugs - from serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Ettmayer, P., Amidon, G. L., Clement, B. & Testa, B. Lessons learned from marketed and investigational prodrugs. J. Med. Chem. 47, 2393–2404 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Fura, A. et al. Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery. J. Med. Chem. 47, 4339–4351 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Obach, R. S. Pharmacologically active drug metabolites: impact on drug discovery and pharmacotherapy. Pharmacol. Rev. 65, 578–640 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Testa, B. & Krämer, S. D. The biochemistry of drug metabolism — an introduction. Part 1. Metabolism and bioactivity. Chem. Biodivers. 3, 1053–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Vandenberg, J. I. et al. hERG K+ channels: structure, function, and clinical significance. Physiol. Rev. 92, 1393–1478 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Guengerich, F. P. & MacDonald, J. S. Applying mechanisms of chemical toxicity to predict drug safety. Chem. Res. Toxicol. 20, 344–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Tang, W. & Lu, A. Y. H. Metabolic bioactivation and drug-related adverse effects: current status and future directions from a pharmaceutical research perspective. Drug Metab. Rev. 42, 225–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Esser, C. in Comprehensive Medicinal Chemistry (eds Testa, B. & van de Waterbeemd, H.) 215–229 (Elsevier, 2007).

    Book  Google Scholar 

  119. Sullivan, E. A. & Shulman, K. I. Diet and monoamine oxidase inhibitors: a re-examination. Can. J. Psychiatry 29, 707–711 (1984).

    Article  CAS  PubMed  Google Scholar 

  120. Quinn, D. K. & Stern, T. A. Linezolid and serotonin syndrome. Prim. Care Companion J. Clin. Psychiatry 11, 353–356 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gillman, P. K. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br. J. Anaesth. 95, 434–441 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Kell, D. B., Dobson, P. D., Bilsland, E. & Oliver, S. G. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov. Today 18, 218–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Thede, K. et al. 3-cyanoalkyl- and 3-hydroxyalkylindoles and use thereof. WO2009156091A1 (2009).

  124. Weisel, M., Proschak, E. & Schneider, G. PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem. Cent. J. 1, 7 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. MEXAlert (CompuDrug International Inc., 2001).

  126. QikProp (Schrödinger LLC, 2014).

  127. Li, J., Schneebeli, S. T., Bylund, J., Farid, R. & Friesner, R. A. IDSite: an accurate approach to predict P450-mediated drug metabolism. J. Chem. Theory Comput. 7, 3829–3845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rydberg, P., Gloriam, D. E., Zaretzki, J., Breneman, C. & Olsen, L. SMARTCyp: a 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Med. Chem. Lett. 1, 96–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rydberg, P., Gloriam, D. & Olsen, L. The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26, 2988–2989 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. StarDrop (Optibrium, Ltd., 2014).

  131. ADMET Predictor (Simulations Plus Inc, 2014.).

  132. Percepta Platform (ACD/Labs Inc., 2014).

  133. Zaretzki, J. et al. RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics 29, 497–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Darvas, F. MetabolExpert: an expert system for predicting metabolism of substances. QSAR Environ. Toxicol. 71–81 (1987).

  135. Klopman, G., Dimayuga, M. & Talafous, J. META. 1. A program for the evaluation of metabolic transformation of chemicals. J. Chem. Inf. Model. 34, 1320–1325 (1994).

    CAS  Google Scholar 

  136. MetaDrug (Thomson Reuters, 2012).

  137. Mekenyan, O. G., Dimitrov, S. D., Pavlov, T. S. & Veith, G. D. A systematic approach to simulating metabolism in computational toxicology. I. The TIMES heuristic modelling framework. Curr. Pharm. Des. 10, 1273–1293 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Gao, J., Ellis, L. B. & Wackett, L. P. The University of Minnesota Pathway Prediction System: multi-level prediction and visualization. Nucleic Acids Res. 39, W406–W411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. JChem Metabolizer (ChemAxon, Kft, 2014.).

  140. Terfloth, L., Bienfait, B. & Gasteiger, J. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J. Chem. Inf. Model. 47, 1688–1701 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Mishra, N. K., Agarwal, S. & Raghava, G. P. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. BMC Pharmacol. 10, 8 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Rostkowski, M., Spjuth, O. & Rydberg, P. WhichCyp: prediction of cytochromes P450 inhibition. Bioinformatics 29, 2051–2052 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Faulon, J. L., Visco, D. P. & Pophale, R. S. The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Model. 43, 707–720 (2003).

    CAS  Google Scholar 

  144. Vedani, A., Dobler, M. & Smieško, M. VirtualToxLab — a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol. Appl. Pharmacol. 261, 142–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. ADMEWORKS Predictor (Fujitsu Kyushu Systems Ltd., 2011).

  146. Smithing, M. P. & Darvas, F. HazardExpert. An expert system for predicting chemical toxicity. ACS Symp. Ser. 484, 191–200 (1992).

    Article  CAS  Google Scholar 

  147. Leadscope toxicity models (Leadscope Inc., 2013).

  148. CASE ultra & modules (MultiCASE Inc., 2013).

  149. Patlewicz, G., Jeliazkova, N., Safford, R. J., Worth, A. P. & Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res. 19, 495–524 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. TOPKAT (Accelrys Inc., 2013).

  151. SYMMETRY (Prous Institute for Biomedical Research S.A., 2013).

  152. Campagna-Slater, V., Pottel, J., Therrien, E., Cantin, L. D. & Moitessier, N. Development of a computational tool to rival experts in the prediction of sites of metabolism of xenobiotics by p450s. J. Chem. Inf. Model. 52, 2471–2483 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. ADME database (Fujitsu Kyushu Systems Ltd, 2014).

  154. Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. GOSTAR drug database (GVK Biosciences Private Limited, 2013).

  157. Wishart, D. S. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Gao, J. F., Ellis, L. B. M. & Wackett, L. P. The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res. 38, D488–D491 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Metabase (Thomson Reuters, 2013).

  162. Hachad, H., Ragueneau-Majlessi, I. & Levy, R. H. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database. Hum. Genom. 5, 61 (2010).

    Article  CAS  Google Scholar 

  163. Metabolite (Accelrys Inc., 2013).

  164. Smith, C. A. et al. Metlin: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Hewett, M. et al. PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic Acids Res. 30, 163–165 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cao, D. et al. ADMET evaluation in drug discovery. 11. PharmacoKinetics Knowledge Base (PKKB): a comprehensive database of pharmacokinetic and toxic properties for drugs. J. Chem. Inf. Model. 52, 1132–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Preissner, S. et al. SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 38, D237–D243 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Kirchmair or Gisbert Schneider.

Ethics declarations

Competing interests

G.S. is a co-founder of inSili.com LLC, Zurich, and AlloCyte Pharmaceuticals Ltd, Basel, and is a scientific consultant in the pharmaceutical industry.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchmair, J., Göller, A., Lang, D. et al. Predicting drug metabolism: experiment and/or computation?. Nat Rev Drug Discov 14, 387–404 (2015). https://doi.org/10.1038/nrd4581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4581

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research