Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Efficacy at g-protein-coupled receptors

Key Points

  • Historically, efficacy was defined as the property of a molecule that produced receptor activation and a subsequent physiological tissue response.

  • New technologies have revealed that receptor proteins have a wide range of behaviours, and that some ligands can influence these behaviours without inducing a physiological response.

  • Whereas current thermodynamic models link efficacy with G-protein activation, a more flexible model based on the idea that proteins adopt numerous conformations, and that some of these have physiological significance, uniformly describes how ligands can have a number of 'efficacies'.

  • In terms of this model, ligand binding produces a different set of conformations, and, as some of these produce receptor effects, they determine the various efficacies of that molecule.

  • The model is heuristic and useful as a conceptual tool, but cannot fit data due to the large number of parameters that cannot be estimated independently.

  • Examples are given of ligands that do not produce physiological G-protein mediated response, but do cause receptor phosphorylation, dimerization and internalization.

  • In view of the relationship between efficacy and affinity, these ideas suggest that molecules that have affinity for receptors but do not produce overt physiological response should be studied for other receptor-related activities that might be useful therapeutically.

Abstract

At present, the drug-discovery process centres on ligands that either block or produce physiological responses. However, there are therapeutic uses for ligands that do neither of these things, but which still affect receptors in other ways. This review discusses the intimate relationship between the affinity of a ligand for its receptor, and the probability that the binding of the ligand will produce some change in the receptor, resulting in efficacy. This, in turn, argues that ligands that have affinity should be tested more broadly, for a wider range of efficacies, to detect hidden therapeutic activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of a hypothetical G-protein-coupled receptor.
Figure 2: GPCR ensembles.
Figure 3: Detection of ligand binding through observation of constitutive receptor activity.

Similar content being viewed by others

References

  1. Waud, D. R. Pharmacological receptors. Pharmacol. Rev. 20, 49–88 (1968).

    CAS  PubMed  Google Scholar 

  2. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Kenakin, T. P. & Ross, E. in Goodman and Gilman's The Pharmacological Basis of Therapeutics 10th edn Ch. 2 (eds Hardman, J. G. & Limbird, L. E.) 31–45 (McGraw-Hill, New York, 2001).

    Google Scholar 

  4. Kenakin, T. P. Efficacy in drug receptor theory: outdated concept or under-valued tool? Trends Pharmacol. Sci. 20, 400–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Onaran, H. O. & Costa, T. Agonist efficacy and allosteric models of receptor action. Ann. NY Acad. Sci. 812, 98–115 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Onaran, H. O., Scheer, A., Cotecchia, S. & Costa, T. in The Pharmacology of Functional, Biochemical, and Recombinant Systems Handbook of Experimental Pharmacology Vol. 148 (eds Kenakin, T. P. & Angus, J. A.) 217–280 (Springer, Heidelberg, 2000).References 5 and 6 outline a new approach to viewing receptor activation as being a process of probability of stabilization of receptor conformations for the expression of biological activity.

    Google Scholar 

  7. Ariens, E. J. Affinity and intrinsic activity in the theory of competitive inhibition. Part I. Problems and theory. Arch. Int. Pharmacodyn. Ther. 99, 32–49 (1954).The first paper to discuss the property of some molecules to induce response as an intrinsic property of the drug–receptor pair and, also, the first to attempt to quantify this property.

    CAS  PubMed  Google Scholar 

  8. Kenakin, T. P. Prenalterol as a selective cardiostimulant: differences between organ and receptor selectivity. J. Cardiovasc. Pharmacol. 7, 208–210 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Stephenson, R. P. A modification of receptor theory. Br. J. Pharmacol. 11, 379–393 (1956).Following reference 7 , this work extended the concept of efficacy as being a drug–receptor property. It also introduced the important concept of the non-linear relationships between receptor occupancy, stimulus and response.

    CAS  Google Scholar 

  10. Furchgott, R. F. in Advances in Drug Research Vol. 3. (eds Harper, N. J. & Simmonds, A. B.) 21–55 (Academic, London/New York, 1966).This paper described the quantization of efficacy into 'intrinsic efficacy', namely the unit stimulus given to a single receptor by an agonist. This concept enabled comparison of stimuli using receptor systems containing different receptor densities on the cell surface.

    Google Scholar 

  11. Wyman, J. The binding potential, a neglected linkage concept. J. Mol. Biol. 11, 631–667 (1965).

    Article  CAS  PubMed  Google Scholar 

  12. Wyman, J. Allosteric linkage. J. Am. Chem. Soc. 89, 2202–2232 (1967).An important treatise on linkage-theory analysis of the reciprocal allosteric interaction of ligands and proteins.

    Article  CAS  Google Scholar 

  13. Weber, G. Ligand binding and internal equilibria in proteins. Biochemistry 11, 864–878 (1972).

    Article  CAS  PubMed  Google Scholar 

  14. Weber, G. Energetics of ligand binding to proteins. Adv. Protein Chem. 29, 1–83 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Rodbell, M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 17–22 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Gilman, A. G. G-proteins: transducers of G-protein generated signals. Annu. Rev. Biochem. 56, 615–645 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Bourne, H. R. How receptors talk to trimeric G-proteins. Curr. Opin. Cell Biol. 9, 134–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, W.-J. et al. Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. Mol. Pharmacol. 52, 1164–1175 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kenakin, T. Differences between natural and recombinant G protein-coupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol. Sci. 18, 456–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Watson, C. et al. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol. 58, 1230–1238 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Clarke, W. P. & Bond, R. A. The elusive nature of intrinsic efficacy. Trends Pharmacol. Sci. 19, 271–277 (1998).

    Article  Google Scholar 

  22. Frauenfelder, H., Parak, F. & Young, R. D. Conformational substrates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Hvidt, A. & Nielsen, S. Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287–386 (1966).

    Article  CAS  PubMed  Google Scholar 

  25. Woodward, C. Is the slow-exchange core the protein folding core? Trends Biol. Sci. 18, 359–360 (1993).

    Article  CAS  Google Scholar 

  26. Woodward, C., Simon, I. & Tuchsen, E. Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48, 135–160 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Hilser, V. J. & Freire, E. Structure-based calculation of the equilibrium folding pathway of proteins: correlation with hydrogen exchange protection factors. J. Mol. Biol. 262, 756–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Hilser, V. J. & Freire, E. Predicting the equilibrium protein folding pathway: structure-based analysis of staphylococcal nuclease. Protein Struct. Funct. Genet. 27, 171–183 (1997).

    Article  CAS  Google Scholar 

  29. Hilser, V. J., Dowdy, D., Oas, T. G. & Freire, E. The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc. Natl Acad. Sci. USA 95, 9903–9908 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bai, Y., Sosnick, T. R., Mayne, L. & Englander, S. W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Milne, J. S., Mayne, L., Roder, H., Wand, A. J. & Englander, S. W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 7, 739–745 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Milne, J. S., Xu, Y., Mayne, L. C. & Englander, S. W. Experimental study of the protein folding landscape: unfolding reactions in cytochrome c. J. Mol. Biol. 290, 811–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Ikezu, T., Okamoto, T., Ogata, E. & Nishimoto, I. Amino acids 356–372 constitute a Gi-activator sequence of the α2-adrenergic receptor and have a Phe substitute in the G-protein-activator sequence motif. FEBS Lett. 31, 29–32 (1992).

    Article  Google Scholar 

  34. Eason, M. G. & Liggett, S. B. Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the α2A-adrenergic receptor. Evidence for distinct structural determinants that confer Gs versus Gi coupling. J. Biol. Chem. 270, 24753–24760 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Nasman, J., Jansson, C. C. & Akerman, K. E. The second intracellular loop of the α2-adrenergic receptor determines subtype-specific coupling to cAMP production. J. Biol. Chem. 272, 9703–9708 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Burt, A. R. et al. Agonist occupation of an α2A-adrenoceptor–Gi1α fusion protein results in activation of both receptor-linked and endogenous Gi-proteins. Comparisons of their contributions to GTPase activity and signal transduction and analysis of receptor G-protein activation stoichiometry. J. Biol. Chem. 273, 10367–10375 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Wade, S. M. et al. Gi activator region of α2A-adrenergic receptors: distinct basic residues mediate Gi versus Gs activation. Mol. Pharmacol. 56, 1005–1013 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).This paper is one of the first to describe accessory proteins that completely change receptor phenotypes by physical association.

    Article  CAS  PubMed  Google Scholar 

  39. Foord, S. M. & Marshall, F. H. RAMPS: Accessory proteins for seven transmembrane domain receptors. Trends Pharmacol. Sci. 20, 184–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Armour, S. L., Foord, S., Kenakin, T. & Chen, W.-J. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor. J. Pharmacol. Toxicol. Methods 42, 217–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Sato, M. et al. Factors determining specificity of signal transduction by G-protein coupled receptors. J. Biol. Chem. 270, 15269–15276 (1993).

    Article  Google Scholar 

  42. Nanoff, C., Mitteraurer, T., Roka, F., Hohenegger, M. & Friessmuth, M. Species differences in A1 adenosine/G-protein coupling: identification of a membrane protein that stabilizes the association of the receptor/G-protein complex. Mol. Pharmacol. 48, 806–817 (1995).

    CAS  PubMed  Google Scholar 

  43. Hall, R. A. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ullmer, C., Schmuck, K., Figge, A. & Lubbert, H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett. 424, 63–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signaling: beyond the G-protein paradigm. J. Cell Biol. 145, 927–932 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Abdalla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407, 94–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, M. W. et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277, 959–965 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Costa, T. & Herz, A. Antagonists with negative intrinsic activity at δ-opioid receptors coupled to GTP-binding proteins. Proc. Natl Acad. Sci. USA 86, 7321–7325 (1989).The first clear demonstration of constitutive activity for GPCRs that was not due to residual agonist in the medium. This work necessitated the complete revision of the ternary complex model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katz, B. & Thesleff, S. A study of the 'desensitization' produced by acetylcholine at the motor end plate. J. Physiol. (Lond.) 138, 63–80 (1957).

    Article  CAS  Google Scholar 

  51. Del Castillo, J. & Katz, B. Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. London B 146, 369–381 (1957).

    Article  CAS  Google Scholar 

  52. Colquhoun, D. Imprecision in presentation of binding studies. Trends Pharmacol. Sci. 6, 197 (1985).

  53. Karlin, A. On the application of 'a plausible model' of allosteric proteins to the receptor for acetylcholine. J. Theoret. Biol. 16, 306–320 (1967).

    Article  CAS  Google Scholar 

  54. Thron, C. D. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9, 1–9 (1973).

    Article  CAS  PubMed  Google Scholar 

  55. Leff, P. The two-state model of receptor activation. Trends Pharmacol. Sci. 16, 89–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Gether, U., Lin, S. & Kobilka, B. K. Fluorescent labeling of purified β2-adrenergic receptor: evidence for ligand specific conformational changes. J. Biol. Chem. 270, 28268–28275 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Bohm, S. K., Grady, E. F. & Bunnett, N. W. Regulatory mechanisms that modulate signaling by G-protein-coupled receptors. Biochem. J. 322, 1–18 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Koenig, J. A. & Edwardson, J. M. Endocytosis and recycling of G-protein-coupled receptors. Trends Pharmacol. Sci. 18, 276–287 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Riccobene, T. A., Omann, G. M. & Linderman, J. J. Modeling activation and desensitization of G-protein coupled receptors provides insight into ligand efficacy. J. Theor. Biol. 200, 207–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Remmers, A. E., Clark, M. J., Ynag, X. & Medzihradsky, F. δ-opioid receptor down-regulation is independent of functional G-protein yet is dependent on agonist efficacy. J. Pharmacol. Exp. Ther. 287, 625–632 (1998).

    CAS  PubMed  Google Scholar 

  61. Zaki, P. A. et al. Agonist-, antagonist- and inverse agonist-regulated trafficking of the δ-opioid receptor correlates with, but does not require, G-protein activation. J. Pharmacol. Exp. Ther. 298, 1015–1020 (2001).

    CAS  PubMed  Google Scholar 

  62. Roettger, B. F. et al. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor. Mol. Pharmacol. 51, 357–366 (1997).

    CAS  PubMed  Google Scholar 

  63. Alkhatib, G. et al. A RANTES, MIP-1α, MIP-1β receptor as a fusion co-factor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Cara, R. C. & Lusso, P. The V3 domain of the HIV gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nature Med. 2, 1244–1247 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Simmons, G. et al. Potential inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Amara, A. et al. HIV co-receptor down-regulation as an antiviral principle: SDF-1 α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med. 186, 139–146 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Mack, M. et al. Aminooxypentane–RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187, 1215–2438 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Rodriguez-Frade, J. M. et al. Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J. Cell Biol. 144, 755–765 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Thomas, W. G., Quian, H., Chang, C.-S. & Karnik, S. Agonist-induced phosphorylation of the angiotensin II (AT1A) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. J. Biol. Chem. 275, 2893–2900 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Chakrabarti, S., Law, P. Y. & Loh, H. H. Distinct differences between morphine- and [δ-Ala2,N-MePhe4,Gly-ol5]enkephalin-μ-opioid complexes demonstrated by cyclic independent protein kinase phosphorylation. J. Neurochem. 71, 231–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, Y. et al. μ-Opioid receptor phosphorylation, desensitization, and ligand efficacy. J. Biol. Chem. 272, 28869–28874 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Blake, A. D., Bot, G., Freeman, J. C. & Reisine, T. Differential opioid agonist regulation of the mouse μ-opioid receptor. J. Biol. Chem. 272, 782–790 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Keith, D. E. et al. Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem. 271, 19021–19249 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Morisset, S. et al. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408, 860–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kenakin, T. P. Drug efficacy at G-protein coupled receptors. FASEB J. 15, 598–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Morris, B. J. & Millan, M. J. Inability of an opioid antagonist lacking negative intrinsic activity to induce opioid receptor up-regulation in vivo. Br. J. Pharmacol. 102, 883–886 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Smit, M. J. et al. Inverse agonism of histamine H2 antagonists accounts for up-regulation of spontaneously active histamine H2 receptors. Proc. Natl Acad. Sci. USA 93, 6802–6807 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. MacEwan, D. J. & Milligan, G. Inverse agonist-induced up-regulation of the human β2-adrenoceptor in transfected neuroblastoma X glioma hybrid cells. Mol. Pharmacol. 50, 1479–1486 (1996).

    CAS  PubMed  Google Scholar 

  79. Milligan, G. & Bond, R. A. Inverse agonism and the regulation of receptor number. Trends Pharmacol. Sci. 18, 468–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Berg, K. A., Stout, B. D., Cropper, J. D., Maayani, S. & Clarke, W. P. Novel actions of inverse agonists on 5-HT2C receptor systems. Mol. Pharmacol. 55, 863–872 (1999).

    CAS  PubMed  Google Scholar 

  81. Nagaraja, S., Iyer, S., Liu, X., Eichberg, J. & Bond, R. A. Treatment with inverse agonists enhances baseline atrial contractility in transgenic mice with chronic β2-adrenoceptor activation. Br. J. Pharmacol. 127, 1099–1104 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Chen, G. et al. Use of constitutive G protein-coupled receptor activity for drug discovery. Mol. Pharmacol. 57, 125–134 (1999).

    Google Scholar 

  83. Chen, G. et al. Constitutive receptor systems for drug discovery. J. Pharmacol. Toxicol. Methods 42, 199–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Jayawickreme, C. K., Graminski, G. F., Quillan, J. M. & Lerner, M. R. Creation and functional screening of a multi-use peptide library. Proc. Natl Acad. Sci. USA 91, 1614–1618 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jayawickreme, C. K., Graminski, G. F., Quillan, J. M. & Lerner, M. R. Discovery and structure–function analysis of α-melanocyte-stimulating hormone antagonists. J. Biol. Chem. 269, 29846–29854 (1994).

    CAS  PubMed  Google Scholar 

  86. Lerner, M. R. Tools for investigating functional interactions between ligands and G-protein-coupled receptors. Trends Neurosci. 17, 142–146 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, W.-J. et al. Recombinant human CXC-chemokine receptor-4 in melanophores are linked to Gi protein: seven transmembrane coreceptors for human immunodeficiency virus entry into cells. Mol. Pharmacol. 53, 177–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Kenakin, T. P. in Biomedical Applications of Computer Modeling (ed. Christopoulos, A.) 1–20 (CRC Press, Florida, 2000).

    Book  Google Scholar 

  89. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).This paper discusses the intrinsic property of receptors to form an active state in the absence of ligand, and so is the first to introduce the extended ternary complex model for GPCRs.

    CAS  PubMed  Google Scholar 

  90. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. I. Model description. J. Theor. Biol. 178, 151–167 (1996).

    Article  CAS  Google Scholar 

  91. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. II. Understanding apparent affinity. J. Theor. Biol. 178, 169–182 (1996).

    Article  CAS  Google Scholar 

  92. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. III. Resurrecting efficacy. J. Theor. Biol. 181, 381–397 (1996).References 90–92 describe a more thermodynamically complete (but more complex) version of the extended ternary complex model. It allows non-activated receptors to interact with G proteins to produce non-signalling species.

    Article  CAS  PubMed  Google Scholar 

  93. Freire, E. Can allosteric regulation be predicted from structure? Proc. Natl Acad. Sci. USA 97, 11680–11682 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.K. would like to thank O. Onaran, University of Ankara, Turkey, for insightful discussions on mechanisms of efficacy.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

angiotensin II

angiotensin II receptor

bradykinin receptor

CCK receptor

CCR2

CCR5

cholecystokinin

dopamine D2 receptor

RAMPs

RANTES

somatostatin receptor

FURTHER INFORMATION

G proteins

G-protein-coupled receptors

Glossary

LINKAGE THEORY

Based on the first law of thermodynamics, linkage theory creates models of protein species that are connected, and which can interconvert either spontaneously or through interaction with other species, such as ligands and G proteins. The interconversion pathways between any species are of equal energy, so none are preferred.

PLEIOTROPIC RECEPTOR

A receptor that couples to more than one G protein. An example is the human calcitonin receptor, which couples to Gi, Gs and Gq proteins.

PLEIOTROPIC COUPLING

Literally meaning 'having mulitple phenotypic expressions', in this case, pleiotropic coupling refers to the ability of some receptors to activate more than one G protein and therefore stimulate multiple response pathways in cells.

ENSEMBLE THEORY

This usage refers to the study of proteins as collections of microconformations, some being energetically preferred over others. The interaction of these collections of conformations with ligands causes them to redistribute the relative conformations into a new ensemble.

PDZ DOMAIN

(PSD-95, Dlg and ZO-1/2). Protein–protein interaction domain that binds to carboxy-terminal polypeptides in particular.

SH2 DOMAIN

(Src-homology domain 2). A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and thereby has a key role in relaying cascades of signal transduction.

SH3 DOMAIN

(Src-homology domain 3.) A protein sequence of 50 amino acids that recognizes and binds sequences that are rich in proline.

MACRO-AFFINITY

Although some ligands will bind preferentially to some receptor conformations over others, the weighted average affinity that a ligand has for a receptor ensemble is known as the 'macro-affinity' of the ligand for the receptor. It is the concentration of ligand that is bound to 50% of the receptors at any one instant.

TACHYPHYLLAXIS

The reduction in response during repeated receptor stimulation by an agonist; usually ascribed to the production of a desensitized state of the receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenakin, T. Efficacy at g-protein-coupled receptors. Nat Rev Drug Discov 1, 103–110 (2002). https://doi.org/10.1038/nrd722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing