Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Techniques used to characterize the gut microbiota: a guide for the clinician

Abstract

The gut microbiota is a complex ecosystem that has a symbiotic relationship with its host. An association between the gut microbiota and disease was first postulated in the early 20th century. However, until the 1990s, knowledge of the gut microbiota was limited because bacteriological culture was the only technique available to characterize its composition. Only a fraction (estimated at <30%) of the gut microbiota has been cultured to date. Since the 1990s, advances in culture-independent techniques have spearheaded our knowledge of the complexity of this ecosystem. These techniques have elucidated the microbial diversity of the gut microbiota and have shown that alterations in the gut microbiota composition and function are associated with certain disease states, such as IBD and obesity. These new techniques are fast, facilitate high throughput, identify organisms that are uncultured to date and enable enumeration of organisms present in the gut microbiota. This Review discusses the techniques that can used to characterize the gut microbiota, when they can be applied to human studies and their relative advantages and limitations.

Key Points

  • A fraction estimated at <30% of the gut microbiota has been cultured to date; new culture-independent techniques have been developed that have revolutionized our knowledge of the gut microbiota

  • The majority of these techniques are based on the extraction of DNA and amplification of 16S ribosomal RNA genes

  • 16S rRNA genes are highly conserved between bacterial species, but vary in a manner that allows species identification

  • Different techniques can phylogenetically identify and/or quantify the components of the gut microbiota

  • Metagenomics is the most recent development in the study of the gut microbiota and is defined as the study of collective genomes from the environment

  • Metagenomics will further expand our knowledge of the association between the gut microbiota and disease, and help identify causative mechanisms

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Extraction of nucleic acid and amplification of 16S rRNA genes.
Figure 4: Terminal-restriction fragment length polymorphism.
Figure 5: Fluorescence in situ hybridization.
Figure 6: DNA microarrays.
Figure 7: Sanger sequencing with capillary electrophoresis.
Figure 8: 454 pyrosequencing®.

Similar content being viewed by others

References

  1. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Steinhoff, U. Who controls the crowd? New findings and old questions about the intestinal microflora. Immunol. Lett. 99, 12–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O'Hara, A. M. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hooper, L. V., Bry, L., Falk, P. G. & Gordon, J. I. Host–microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20, 336–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Neish, A. S. Microbes in gastrointestinal health and disease. Gastroenterology 136, 65–80 (2009).

    Article  PubMed  Google Scholar 

  8. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Tap, J. et al. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11, 2574–2584 (2009).

    Article  PubMed  Google Scholar 

  11. Metchnikoff, E. & Mitchell, P. C. The prolongation of life; optimistic studies (W. Heinemann, London; G. P. Putnam's Sons, New York, 1907).

  12. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dear, K. L., Elia, M. & Hunter, J. O. Do interventions which reduce colonic bacterial fermentation improve symptoms of irritable bowel syndrome? Dig. Dis. Sci. 50, 758–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Huycke, M. M. & Gaskins, H. R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp. Biol. Med. (Maywood) 229, 586–597 (2004).

    Article  CAS  Google Scholar 

  15. Brady, L. J., Gallaher, D. D. & Busta, F. F. The role of probiotic cultures in the prevention of colon cancer. J. Nutr. 130, 410S–414S (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scott, F. W. Food-induced type 1 diabetes in the BB rat. Diabetes Metab. Rev. 12, 341–359 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Vrieze, A. et al. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53, 606–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajilic-Stojanovic, M., Smidt, H. & de Vos, W. M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 9, 2125–2136 (2007).

    Article  PubMed  Google Scholar 

  21. Zoetendal, E. G., Vaughan, E. E. & de Vos, W. M. A microbial world within us. Mol. Microbiol. 59, 1639–1650 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Marchesi, J. R. Human distal gut microbiome. Environ. Microbiol. 13, 3088–3102 (2011).

    Article  PubMed  Google Scholar 

  23. Zoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68, 3401–3407 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G799–G807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbara, G. et al. The immune system in irritable bowel syndrome. J. Neurogastroenterol. Motil. 17, 349–359 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Claesson, M. J. et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4, e6669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article  PubMed  Google Scholar 

  28. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ingham, C. J. et al. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc. Natl Acad. Sci. USA 104, 18217–18222 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stams, A. J. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66, 271–294 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Rajendhran, J. & Gunasekaran, P. Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol. Res. 166, 99–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Clarridge, J. E. 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840–862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R. & Stahl, D. A. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. von Wintzingerode, F., Gobel, U. B. & Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213–229 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Carey, C. M., Kirk, J. L., Ojha, S. & Kostrzynska, M. Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota, and probiotic use and effectiveness. Can. J. Microbiol. 53, 537–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Mariat, D. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartosch, S., Fite, A., Macfarlane, G. T. & McMurdo, M. E. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70, 3575–3581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Rinttila, T., Kassinen, A., Malinen, E., Krogius, L. & Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97, 1166–1177 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Ponnusamy, K., Choi, J. N., Kim, J., Lee, S. Y. & Lee, C. H. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 60, 817–827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zwielehner, J. et al. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp. Gerontol. 44, 440–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Jalanka-Tuovinen, J. et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE 6, e23035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Noor, S. O. et al. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol. 10, 134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muyzer, G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Zoetendal, E. G., Akkermans, A. D. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–9 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Osborn, A. M., Moore, E. R. & Timmis, K. N. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2, 39–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Marsh, T. L. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2, 323–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. McCartney, A. L. Application of molecular biological methods for studying probiotics and the gut flora. Br. J. Nutr. 88 (Suppl. 1), S29–S37 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Li, F., Hullar, M. A. & Lampe, J. W. Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J. Microbiol. Methods 68, 303–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hayashi, H., Sakamoto, M., Kitahara, M. & Benno, Y. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol. Immunol. 47, 557–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Matsumoto, M., Sakamoto, M., Hayashi, H. & Benno, Y. Novel phylogenetic assignment database for terminal-restriction fragment length polymorphism analysis of human colonic microbiota. J. Microbiol. Methods 61, 305–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–25 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rigottier-Gois, L., Bourhis, A. G., Gramet, G., Rochet, V. & Dore, J. Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol. Ecol. 43, 237–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Zoetendal, E. G. et al. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl. Environ. Microbiol. 68, 4225–4232 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moter, A. & Gobel, U. B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41, 85–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Nadal, I., Donat, E., Ribes-Koninckx, C., Calabuig, M. & Sanz, Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J. Med. Microbiol. 56, 1669–1674 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kleessen, B., Kroesen, A. J., Buhr, H. J. & Blaut, M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol. 37, 1034–1041 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Swidsinski, A., Loening-Baucke, V., Vaneechoutte, M. & Doerffel, Y. Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14, 147–161 (2008).

    Article  PubMed  Google Scholar 

  61. Rochet, V., Rigottier-Gois, L., Rabot, S. & Dore, J. Validation of fluorescent in situ hybridization combined with flow cytometry for assessing interindividual variation in the composition of human fecal microflora during long-term storage of samples. J. Microbiol. Methods 59, 263–270 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Palmer, C. et al. Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res. 34, e5 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paliy, O., Kenche, H., Abernathy, F. & Michail, S. High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl. Environ. Microbiol. 75, 3572–3579 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajilic-Stojanovic, M. et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol. 11, 1736–1751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DeAngelis, K. M. et al. PCR amplification-independent methods for detection of microbial communities by the high-density microarray PhyloChip. Appl. Environ. Microbiol. 77, 6313–6322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rajilic-Stojanovic, M. et al. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156, 3270–3281 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Cook, K. L. & Sayler, G. S. Environmental application of array technology: promise, problems and practicalities. Curr. Opin. Biotechnol. 14, 311–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Spiegelman, D., Whissell, G. & Greer, C. W. A survey of the methods for the characterization of microbial consortia and communities. Can. J. Microbiol. 51, 355–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Cole, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Andoh, A., Benno, Y., Kanauchi, O. & Fujiyama, Y. Recent advances in molecular approaches to gut microbiota in inflammatory bowel disease. Curr. Pharm. Des. 15, 2066–2073 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Voelkerding, K. V., Dames, S. A. & Durtschi, J. D. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55, 641–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Rogers, Y. H. & Venter, J. C. Genomics: massively parallel sequencing. Nature 437, 326–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut http://dx.doi.org/10.1136/gutjnl-2011-301501.

  78. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Peterson, J. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  PubMed  Google Scholar 

  81. Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. De Vos, W. M. Mining the microbes—the human microbiome as model. Microb. Biotechnol. 2, 153–154 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605–1615 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Smith, L. M. et al. Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Madabhushi, R. S. Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions. Electrophoresis 19, 224–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Ronaghi, M., Uhlen, M. & Nyren, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr J. O'Callaghan, Paul O' Toole's laboratory, University College Cork, Ireland, for the microarray image in Figure 6. Microbiota studies in the authors' laboratories are funded in part by awards from Science Foundation Ireland, the Health Research Board and the (Government of Ireland) Department of Agriculture, Food and Fisheries.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Eamonn M. M. Quigley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraher, M., O'Toole, P. & Quigley, E. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 9, 312–322 (2012). https://doi.org/10.1038/nrgastro.2012.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.44

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research