Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate lymphoid cells: major players in inflammatory diseases

Key Points

  • Innate lymphoid cells (ILCs) are involved in many inflammatory disorders but appear to be redundant for protective immunity in humans under modern conditions of hygiene and medicine when T cell and B cell functions are preserved.

  • The plasticity of ILCs and their ability to adopt a pro-inflammatory ILC1-type profile is involved in the pathogenesis of chronic obstructive pulmonary disease and Crohn's disease.

  • ILC2s are involved in type 2 inflammatory diseases, such as asthma and atopic dermatitis. They produce type 2 cytokines and interact with both immune and non-immune cell populations in the local tissue environment. ILC2s also contribute to fibrosis.

  • ILC3s are critical effector cells in the development of psoriasis.

  • Targeting and depleting ILCs could have therapeutic value in various inflammatory diseases in humans.

Abstract

Recent years have seen a marked increase in our understanding of innate lymphoid cells (ILCs). ILCs can be classified into different groups based on their similarity to T cell subsets in terms of their expression of key transcription factors and cytokine production. Various immunological functions of ILCs have been described, and increasing numbers of studies have implicated these cells in inflammatory disorders. Here, we detail the roles of ILCs in inflammatory diseases; we cover type 2 inflammatory diseases (such as asthma, chronic rhinosinusitis and atopic dermatitis), as well as inflammatory bowel diseases, psoriasis and other systemic or organ-specific inflammatory and autoimmune diseases. Future directions in the field are discussed, together with potential avenues of treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of innate lymphoid cells.
Figure 2: Innate lymphoid cells are involved in various airway inflammatory disorders.
Figure 3: Innate lymphoid cells in the gut: a balance between homeostasis maintenance and the induction of inflammation.
Figure 4: Innate lymphoid cells in skin inflammation and repair.
Figure 5: Innate lymphoid cells: dual roles in inflammatory diseases and in the control of inflammation.

Similar content being viewed by others

References

  1. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luci, C. et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013). International experts in the field proposed a uniform nomenclature, in which ILCs are categorized into three groups based on the cytokines that they can produce and the transcription factors that regulate their development and function.

    Article  CAS  PubMed  Google Scholar 

  10. Carrega, P. et al. NCR+ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat. Commun. 6, 8280 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Beek, J. J. P., Martens, A. W. J., Bakdash, G. & de Vries, I. J. M. Innate lymphoid cells in tumor immunity. Biomedicines 4, E7 (2015).

    Article  CAS  Google Scholar 

  13. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dadi, S. & Li, M. O. Tissue-resident lymphocytes: sentinel of the transformed tissue. J. Immunother. Cancer 5, 41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Croxatto, D. et al. Group 3 innate lymphoid cells regulate neutrophil migration and function in human decidua. Mucosal Immunol. 9, 1372–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Vacca, P. et al. NK cells and other innate lymphoid cells in hematopoietic stem cell transplantation. Front. Immunol. 7, 188 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morita, H. et al. An interleukin-33-Mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43, 175–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartemes, K. R., Kephart, G. M., Fox, S. J. & Kita, H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 134, 671–678.e4 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, S. G. et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75–86.e8 (2016). In this cross-sectional study, analysis of blood and sputum ILC2s from asthmatic patients and controls showed that ILC2s can promote the persistence of airway eosinophilia in patients with severe asthma through uncontrolled localized production of the type 2 cytokines IL-5 and IL-13, despite high-dose oral corticosteroid therapy.

    Article  CAS  PubMed  Google Scholar 

  20. Christianson, C. A. et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J. Allergy Clin. Immunol. 136, 59–68.e14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, T. et al. Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 109, 1391–1396 (2015).

    Article  PubMed  Google Scholar 

  22. Kabata, H. et al. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat. Commun. 4, 2675 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Halim, T. Y. F., Krauss, R. H., Sun, A. C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Halim, T. Y. F. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doherty, T. A. et al. STAT6 regulates natural helper cell proliferation during lung inflammation initiated by Alternaria. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L577–L588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, Y.-J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Dyken, S. J. et al. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells. Immunity 40, 414–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stier, M. T. et al. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J. Allergy Clin. Immunol. 138, 814–824.e11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, H.-C. et al. Thymic stromal lymphopoietin is induced by respiratory syncytial virus-infected airway epithelial cells and promotes a type 2 response to infection. J. Allergy Clin. Immunol. 130, 1187–1196.e5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barlow, J. L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198.e1-4 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016). In this study, the fate of lung ILC2s was examined upon allergen challenges, and some ILC2s were shown to persist long after the resolution of the inflammation and to respond to unrelated allergens more potently than naive ILC2s, suggesting memory-like properties of these allergen-experienced ILC2s.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Gonzalez, I., Mathä, L., Steer, C. A. & Takei, F. Immunological memory of group 2 innate lymphoid cells. Trends Immunol. 38, 423–431 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. de Kleer, I. M. et al. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45, 1285–1298 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Steer, C. A. et al. Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J. Allergy Clin. Immunol. http://dx.doi.org/10.1016/j.jaci.2016.12.984 (2017).

  35. Saluzzo, S. et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18, 1893–1905 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Torgerson, D. G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43, 887–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savenije, O. E. M. et al. Interleukin-1 receptor-like 1 polymorphisms are associated with serum IL1RL1-a, eosinophils, and asthma in childhood. J. Allergy Clin. Immunol. 127, 750–756.e1-5 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Saravia, J. et al. Respiratory syncytial virus disease is mediated by age-variable IL-33. PLoS Pathog. 11, e1005217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong, J. Y. et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J. Allergy Clin. Immunol. 134, 429–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sugita, K. et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions via IL-13 in asthma. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2017.02.038 (2017).

    Article  CAS  Google Scholar 

  42. Motomura, Y. et al. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40, 758–771 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Maazi, H. et al. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42, 538–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harvima, I. T. et al. Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 134, 530–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang, J. E., Doherty, T. A., Baum, R. & Broide, D. Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J. Allergy Clin. Immunol. 133, 899–901.e3 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Doherty, T. A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra26 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Drake, L. Y., Iijima, K. & Kita, H. Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy 69, 1300–1307 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Mirchandani, A. S. et al. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J. Immunol. 192, 2442–2448 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Halim, T. Y. F. et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17, 57–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Gold, M. J. et al. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J. Allergy Clin. Immunol. 133, 1142–1148 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Van Dyken, S. J. et al. A tissue checkpoint regulates type 2 immunity. Nat. Immunol. 17, 1381–1387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, H. Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54–61 (2014). This study using an obesity-induced mouse model of airway hyper-responsiveness suggested that obesity-associated asthma is facilitated by inflammation mediated by NLRP3, IL-1β and ILC3s.

    Article  CAS  PubMed  Google Scholar 

  56. Everaere, L. et al. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J. Allergy Clin. Immunol. 138, 1309–1318.e11 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Mjösberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011). This paper identified and described LinCD127+CD161+CRTH2+ ILC2s in humans as an innate source of type 2 cytokines and showed they are enriched in the nasal polyps of patients with chronic rhinosinusitis.

    Article  CAS  PubMed  Google Scholar 

  58. Bal, S. M. et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016). In this study, plasticity between ILC2s and ILC1s and factors contributing to this plasticity are reported, as well as the role of this important mechanism in COPD and chronic rhinosinusitis with nasal polyps.

    Article  CAS  PubMed  Google Scholar 

  59. Lao-Araya, M., Steveling, E., Scadding, G. W., Durham, S. R. & Shamji, M. H. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J. Allergy Clin. Immunol. 134, 1193–1195.e4 (2014).

    Article  PubMed  Google Scholar 

  60. Fan, D.-C. et al. Suppression of immunotherapy on group 2 innate lymphoid cells in allergic rhinitis. Chin. Med. J. 129, 2824–2828 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kearley, J. et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Li, D. et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 134, 1422–1432.e11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA 111, 367–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Wohlfahrt, T. et al. Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann. Rheum. Dis. 75, 623–626 (2016). This study showed that ILC2 counts were elevated in patients with systemic sclerosis and correlated with the extent of skin fibrosis and the presence of interstitial lung disease, providing evidence for a profibrotic effect of ILC2s in the disease.

    Article  CAS  PubMed  Google Scholar 

  67. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013). This paper identified and described T-bet-expressing and IFNγ-producing ILC1s, detailed their plasticity with RORγt+ ILC3s and showed they are enriched in the inflamed intestines of patients with Crohn's disease.

    Article  CAS  PubMed  Google Scholar 

  69. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Hoorweg, K. et al. Functional differences between human NKp44 and NKp44+ RORC+ innate lymphoid cells. Front. Immunol. 3, 72 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hanash, A. M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aparicio-Domingo, P. et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J. Exp. Med. 212, 1783–1791 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klose, C. S. N. et al. A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt lymphoid cells. EMBO J. 30, 2934–2947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Song, C. et al. Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J. Exp. Med. 212, 1869–1882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rankin, L. C. et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat. Immunol. 17, 179–186 (2016). In this study, NCR+ ILC3 cells were found to be redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells, showing the complementarity and redundancy of intestinal ILC3s and adaptive lymphocytes to ensure gut homeostasis.

    Article  CAS  PubMed  Google Scholar 

  82. Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Geiger, T. L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abt, M. C. et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute clostridium difficile infection. Cell Host Microbe 18, 27–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential “inflammatory” type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Oeser, K., Schwartz, C. & Voehringer, D. Conditional IL-4/IL-13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths. Mucosal Immunol. 8, 672–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilhelm, C. et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J. Exp. Med. 213, 1409–1418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peters, C. P., Mjösberg, J. M., Bernink, J. H. & Spits, H. Innate lymphoid cells in inflammatory bowel diseases. Immunol. Lett. 172, 124–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, J. S. et al. Interleukin-23-Independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, J., Doty, A. L., Iqbal, A. & Glover, S. C. The differential frequency of lineageCRTH2CD45+NKp44CD117CD127+ILC subset in the inflamed terminal ileum of patients with Crohn's disease. Cell. Immunol. 304–305, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Takayama, T. et al. Imbalance of NKp44+NKp46 and NKp44NKp46+ natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 139, 882–892.e1-3 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lo, B. C. et al. The orphan nuclear receptor RORα and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn's disease. Sci. Immunol. 1, eaaf8864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Doherty, T. A. et al. Group 2 innate lymphocytes (ILC2) are enriched in active eosinophilic esophagitis. J. Allergy Clin. Immunol. 136, 792–794.e3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Simon, D., Radonjic-Hösli, S., Straumann, A., Yousefi, S. & Simon, H.-U. Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation. Allergy 70, 443–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Dyring-Andersen, B. et al. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br. J. Dermatol. 170, 609–616 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR+ ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014). In this paper, increased proportions of IL-22-producing NCR+ ILC3s were present in the lesional skin and peripheral blood of psoriasis patients, suggesting a role of NCR+ ILC3s in psoriasis pathology.

    Article  CAS  PubMed  Google Scholar 

  105. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, B. S. et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5, 170ra16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939–2950 (2013). Using human skin biopsies from atopic patients and mouse models, this paper identified a role for ILC2s in the pathogenesis of atopic dermatitis and detailed the signalling pathways involved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Savinko, T. et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J. Invest. Dermatol. 132, 1392–1400 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Y.-H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Saunders, S. P. et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J. Allergy Clin. Immunol. 137, 482–491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, L.-Y. et al. Protein palmitoylation by ZDHHC13 protects skin against microbial-driven dermatitis. J. Invest. Dermatol. https://doi.org/10.1016/j.jid.2016.12.011 (2013).

    Article  CAS  Google Scholar 

  114. Kim, B. S. et al. Basophils promote innate lymphoid cell responses in inflamed skin. J. Immunol. 193, 3717–3725 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361, 82–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Trautmann, A. et al. The differential fate of cadherins during T-cell-induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J. Invest. Dermatol. 117, 927–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Salimi, M. et al. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production. J. Immunol. 196, 45–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Michalek, I. M., Loring, B. & John, S. M. A systematic review of worldwide epidemiology of psoriasis. J. Eur. Acad. Dermatol. Venereol 31, 205–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Bowcock, A. M. & Krueger, J. G. Getting under the skin: the immunogenetics of psoriasis. Nat. Rev. Immunol. 5, 699–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Austin, L. M., Ozawa, M., Kikuchi, T., Walters, I. B. & Krueger, J. G. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-γ, interleukin-2, and tumor necrosis factor-α, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113, 752–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, Z. et al. Epidermal Notch1 recruits RORγ+ group 3 innate lymphoid cells to orchestrate normal skin repair. Nat. Commun. 7, 11394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rak, G. D. et al. IL-33-Dependent group 2 innate lymphoid cells promote cutaneous wound healing. J. Invest. Dermatol. 136, 487–496 (2016). This study demonstrated that IL-33-responsive ILC2s promote the restoration of skin integrity after injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Duffin, R. et al. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science 351, 1333–1338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dalli, J., Colas, R. A., Arnardottir, H. & Serhan, C. N. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity 46, 92–105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cols, M. et al. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency. J. Allergy Clin. Immunol. 137, 1206–1215.e1-6 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Roan, F. et al. CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J. Immunol. 196, 2051–2062 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. De Lauretis, A. et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J. Rheumatol 40, 435–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Leijten, E. F. A. et al. Brief report: enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol. 67, 2673–2678 (2015).

    Article  PubMed  Google Scholar 

  131. Triggianese, P. et al. Evidence of IL-17 producing innate lymphoid cells in peripheral blood from patients with enteropathic spondyloarthritis. Clin. Exp. Rheumatol 34, 1085–1093 (2016).

    PubMed  Google Scholar 

  132. Rodríguez-Carrio, J. et al. Brief report: altered innate lymphoid cell subsets in human lymph node biopsy specimens obtained during the at-Risk and earliest phases of rheumatoid arthritis. Arthritis Rheumatol. 69, 70–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Lin, Y. C. et al. Daclizumab reverses intrathecal immune cell abnormalities in multiple sclerosis. Ann. Clin. Transl Neurol. 2, 445–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Perry, J. S. A. et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Gillard, G. O., Saenz, S. A., Huss, D. J. & Fontenot, J. D. Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy. J. Neuroimmunol. 294, 41–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Gross, C. C. et al. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult. Scler. 23, 1025–1030 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Gross, C. C. et al. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm 3, e289 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hatfield, J. K. & Brown, M. A. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol. 297, 69–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Gadani, S. P., Smirnov, I., Smith, A. T., Overall, C. C. & Kipnis, J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214, 285–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Neumann, K. et al. A proinflammatory role of type 2 innate lymphoid cells in murine immune-mediated hepatitis. J. Immunol. 198, 128–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013). In this study, the profibrotic effects of IL-33 are shown to be related to the activation and expansion of liver-resident ILC2s, and ILC2-derived IL-13 was found to be a critical downstream cytokine of IL-33-dependent pathologic tissue remodelling and fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang, Z., Tang, T., Wei, X., Yang, S. & Tian, Z. Type 1 innate lymphoid cells contribute to the pathogenesis of chronic hepatitis B. Innate Immun. 21, 665–673 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Vély, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016). This study showed that there is a selective ILC deficiency in patients with severe combined immunodeficiency after haematopoietic stem cell transplantation and suggested that ILCs might be dispensable in natural conditions if T cells are present and B cell function is preserved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fischer, A. & Rausell, A. Primary immunodeficiencies suggest redundancy within the human immune system. Sci. Immunol. 1, eaah5861 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vivier.

Ethics declarations

Competing interests

The laboratory is supported by grants from the European Research Council (TILC), Agence Nationale de la Recherche, Equipe labellisée “La Ligue” Ligue Nationale contre le Cancer, MSDAvenir, and Innate-Pharma and by institutional grants from INSERM, CNRS, and Aix-Marseille University to the CIML and Marseille Immunopole. E.V. is a co-founder of and shareholder in Innate-Pharma.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebbo, M., Crinier, A., Vély, F. et al. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 17, 665–678 (2017). https://doi.org/10.1038/nri.2017.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.86

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing