Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterotrimeric G protein activation by G-protein-coupled receptors

Key Points

  • G-protein-coupled receptors (GPCRs) represent one of the largest and most diverse groups of proteins in the genome. Activated receptors catalyse nucleotide exchange on a relatively small group of heterotrimeric G proteins to initiate intracellular signalling.

  • Biophysical studies of rhodopsin-family GPCRs have shown that receptor activation results in an outward movement of transmembrane helix VI, which opens a pocket for G protein binding. Increasing evidence suggests that the structure, conformation and specificity of the G protein binding site can be regulated by the identity of the bound ligand.

  • Several different models for receptor–G-protein association have been proposed. These proteins may be precoupled in a large signalling complex. Nucleotide exchange may follow a series of transition complexes. Receptors may function as dimers to activate G proteins.

  • Biophysical studies indicate that receptor-mediated GDP release requires a conformational change in the α5 helix of the Gα subunit and is associated with structural changes at the Gβ binding site. However, additional studies are required to fully describe the mechanism of receptor-mediated GDP release and the structure of the receptor–G-protein complex.

  • Binding of GTP induces a structural rearrangement of the receptor–G-protein complex that leads to dissociation of some, but not all, complexes. This observation is consistent with the existence of precoupled receptor–G-protein complexes that may not completely disassemble on G protein activation.

  • Fundamentally, the unanswered questions about G protein activation reflect a poor understanding of the structure of the complex. A goal of future studies will be to refine current models of the receptor–G-protein complex in terms of the available structural information until a crystal structure of the complex is solved.

Abstract

Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP–GDP exchange on the G protein α-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The G protein cycle.
Figure 2: Receptor–G-protein interface.
Figure 3: Secondary structure of Gα.
Figure 4: Potential routes to the nucleotide-binding pocket.
Figure 5: Proposed mechanisms for GDP release.
Figure 6: A role for Gβγ in GDP dissociation?
Figure 7: GTP-mediated changes at the subunit interface.

Similar content being viewed by others

References

  1. Oldham, W. M. & Hamm, H. E. Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166 (2006). Comprehensive review of the structure and function of heterotrimeric G proteins throughout the G-protein cycle.

    Article  CAS  PubMed  Google Scholar 

  2. Sprang, S. R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Bjarnadottir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  5. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Kristiansen, K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther. 103, 21–80 (2004). Comprehensive review of G-protein-coupled receptor structure and function.

    Article  CAS  PubMed  Google Scholar 

  7. Ballesteros, J. A., Shi, L. & Javitch, J. A. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors. Mol. Pharmacol. 60, 1–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000). First crystal structure of a G-protein-coupled receptor.

    Article  CAS  PubMed  Google Scholar 

  9. Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K. & Stenkamp, R. E. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 7761–7772 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Okada, T. et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 5982–5987 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006). Recently described structure of a photostable rhodopsin intermediate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qanbar, R. & Bouvier, M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97, 1–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Stacey, M., Lin, H. H., Gordon, S. & McKnight, A. J. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem. Sci. 25, 284–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Dann, C. E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Downes, G. B. & Gautam, N. The G protein subunit gene families. Genomics 62, 544–552 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994). First description of nucleotide-dependent conformational changes in G α.

    Article  CAS  PubMed  Google Scholar 

  21. Mixon, M. B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270, 954–960 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–663 (1993). First description of the three-dimensional structure of a G-protein α -subunit.

    Article  CAS  PubMed  Google Scholar 

  23. Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Smotrys, J. E. & Linder, M. E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C. A. & Manning, D. R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Wall, M. A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell 83, 1047–1058 (1995). First structure of a G-protein heterotrimer, which provided the structural basis for G α –G β interactions.

    Article  CAS  PubMed  Google Scholar 

  27. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E. & Sigler, P. B. Crystal structure of a G-protein βγ dimer at 2.1 Å resolution. Nature 379, 369–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt, C. J., Thomas, T. C., Levine, M. A. & Neer, E. J. Specificity of G protein β and γ subunit interactions. J. Biol. Chem. 267, 13807–13810 (1992).

    CAS  PubMed  Google Scholar 

  30. Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Graf, R. et al. Studies on the interaction of α subunits of GTP-binding proteins with βγ dimers. Eur. J. Biochem. 210, 609–619 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Lambright, D. G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Seitz, H. R. et al. Molecular determinants of the reversible membrane anchorage of the G-protein transducin. Biochemistry 38, 7950–7960 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Iiri, T., Backlund, P. S. Jr, Jones, T. L., Wedegaertner, P. B. & Bourne, H. R. Reciprocal regulation of Gsα by palmitate and the βγ subunit. Proc. Natl Acad. Sci. USA 93, 14592–14597 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iniguez-Lluhi, J. A., Simon, M. I., Robishaw, J. D. & Gilman, A. G. G protein βγ subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of γ. J. Biol. Chem. 267, 23409–23417 (1992).

    CAS  PubMed  Google Scholar 

  36. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996). SDSL study of the structural changes in rhodopsin on photoactivation.

    Article  CAS  PubMed  Google Scholar 

  37. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Jensen, A. D. et al. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the β2 adrenergic receptor mapped by site-selective fluorescent labeling. J. Biol. Chem. 276, 9279–9290 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, W., Osman, R. & Gershengorn, M. C. Agonist-induced conformational changes in thyrotropin-releasing hormone receptor type I: disulfide cross-linking and molecular modeling approaches. Biochemistry 44, 2419–2431 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Ward, S. D. et al. Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor. Biochemistry 45, 676–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Palczewski, K. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 743–767 (2006). This study, together with reference 66, describes the use of chemical cross-linking reagents to define point-to-point interactions between rhodopsin and transducin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nature Biotechnol. 21, 807–812 (2003).

    Article  CAS  Google Scholar 

  43. Gether, U., Asmar, F., Meinild, A. K. & Rasmussen, S. G. Structural basis for activation of G-protein-coupled receptors. Pharmacol. Toxicol. 91, 304–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Tolkovsky, A. M. & Levitzki, A. Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17, 3795 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Gales, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nature Struct. Mol. Biol. 13, 778–786 (2006).

    Article  CAS  Google Scholar 

  46. Hein, P., Frank, M., Hoffmann, C., Lohse, M. J. & Bunemann, M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 24, 4106–4114 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alves, I. D. et al. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Biophys. J. 88, 198–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Alves, I. D. et al. Direct observation of G-protein binding to the human δ-opioid receptor using plasmon-waveguide resonance spectroscopy. J. Biol. Chem. 278, 48890–48897 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Liebman, P. A. & Sitaramayya, A. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17, 215–225 (1984).

    CAS  PubMed  Google Scholar 

  50. Hamm, H. E., Deretic, D., Hofmann, K. P., Schleicher, A. & Kohl, B. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin. J. Biol. Chem. 262, 10831–10838 (1987).

    CAS  PubMed  Google Scholar 

  51. Janz, J. M. & Farrens, D. L. Rhodopsin activation exposes a key hydrophobic binding site for the transducin α-subunit C terminus. J. Biol. Chem. 279, 29767–29773 (2004). Uses fluorescence spectroscopy to identify the putative binding site for the G α C-terminal peptide as the inner face of transmembrane helix 6.

    Article  CAS  PubMed  Google Scholar 

  52. Dratz, E. A. et al. NMR structure of a receptor-bound G-protein peptide. Nature 363, 276–281 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Kisselev, O. G. et al. Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc. Natl Acad. Sci. USA 95, 4270–4275 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koenig, B. W. et al. Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. J. Mol. Biol. 322, 441–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Hamm, H. E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835 (1988). First evidence that a peptide corresponding to the C terminus of G α can bind a receptor, competing with the heterotrimeric G protein for binding.

    Article  CAS  PubMed  Google Scholar 

  56. Aris, L. et al. Structural requirements for the stabilization of metarhodopsin II by the C terminus of the α subunit of transducin. J. Biol. Chem. 276, 2333–2339 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Martin, E. L., Rens-Domiano, S., Schatz, P. J. & Hamm, H. E. Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem. 271, 361–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Sullivan, K. A. et al. Identification of receptor contact site involved in receptor-G protein coupling. Nature 330, 758–760 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Schwindinger, W. F., Miric, A., Zimmerman, D. & Levine, M. A. A Novel Gsα mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase. J. Biol. Chem. 269, 25387–25391 (1994).

    CAS  PubMed  Google Scholar 

  60. Osawa, S. & Weiss, E. R. The effect of carboxyl-terminal mutagenesis of Gtα on rhodopsin and guanine nucleotide binding. J. Biol. Chem. 270, 31052–31058 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. West, R. E. Jr, Moss, J., Vaughan, M., Liu, T. & Liu, T. Y. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J. Biol. Chem. 260, 14428–14430 (1985).

    CAS  PubMed  Google Scholar 

  62. Onrust, R. et al. Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science 275, 381–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Bae, H. et al. Molecular determinants of selectivity in 5-hydroxytryptamine1B receptor-G protein interactions. J. Biol. Chem. 272, 32071–32077 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Bae, H., Cabrera-Vera, T. M., Depree, K. M., Graber, S. G. & Hamm, H. E. Two amino acids within the α4 helix of Gαi1 mediate coupling with 5-hydroxytryptamine1B receptors. J. Biol. Chem. 274, 14963–14971 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Lichtarge, O., Bourne, H. R. & Cohen, F. E. Evolutionarily conserved Gαβγ binding surfaces support a model of the G protein-receptor complex. Proc. Natl Acad. Sci. USA 93, 7507–7511 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai, K., Itoh, Y. & Khorana, H. G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc. Natl Acad. Sci. USA 98, 4877–4882 (2001). This study, together with reference 41, describes the use of chemical cross-linking reagents to define point-to-point interactions between rhodopsin and transducin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mazzoni, M. R. & Hamm, H. E. Interaction of transducin with light-activated rhodopsin protects it from proteolytic digestion by trypsin. J. Biol. Chem. 271, 30034–30040 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Grishina, G. & Berlot, C. H. A surface-exposed region of Gsα in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol. Pharmacol. 57, 1081–1092 (2000).

    CAS  PubMed  Google Scholar 

  69. Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., Remmers, A. E. & Neubig, R. R. Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβ and the amino terminus of Gα. J. Biol. Chem. 269, 27618–27624 (1994).

    CAS  PubMed  Google Scholar 

  70. Itoh, Y., Cai, K. & Khorana, H. G. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc. Natl Acad. Sci. USA 98, 4883–4887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ho, M. K. & Wong, Y. H. The amino terminus of Gαz is required for receptor recognition, whereas its α4/β6 loop is essential for inhibition of adenylyl cyclase. Mol. Pharmacol. 58, 993–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., VanDort, M. & Neubig, R. R. Receptor and membrane interaction sites on Gβ. A receptor-derived peptide binds to the carboxyl terminus. J. Biol. Chem. 271, 3336–3339 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Ford, C. E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Kisselev, O., Pronin, A., Ermolaeva, M. & Gautam, N. Receptor–G protein coupling is established by a potential conformational switch in the βγ complex. Proc. Natl Acad. Sci. USA 92, 9102–9106 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kisselev, O. G. & Downs, M. A. Rhodopsin controls a conformational switch on the transducin γ subunit. Structure 11, 367–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Azpiazu, I. et al. A G protein γ subunit-specific peptide inhibits muscarinic receptor signaling. J. Biol. Chem. 274, 35305–35308 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Javitch, J. A. The ants go marching two by two: oligomeric structure of G-protein-coupled receptors. Mol. Pharmacol. 66, 1077–1082 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Milligan, G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 66, 1–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Baneres, J. L. & Parello, J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J. Mol. Biol. 329, 815–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Fotiadis, D. et al. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Pin, J. P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. George, S. R., O'Dowd, B. F. & Lee, S. P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nature Rev. Drug Discov. 1, 808–820 (2002).

    Article  CAS  Google Scholar 

  83. Goudet, C. et al. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem. 280, 24380–24385 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J. 24, 499–509 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. White, J. F. et al. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc. Natl Acad. Sci. USA 104, 12199–12204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Herrmann, R. et al. Sequence of interactions in receptor-G protein coupling. J. Biol. Chem. 279, 24283–24290 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Herrmann, R., Heck, M., Henklein, P., Hofmann, K. P. & Ernst, O. P. Signal transfer from GPCRs to G proteins: role of the Gα N-terminal region in rhodopsin-transducin coupling. J. Biol. Chem. 281, 30234–30241 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D. & Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Blahos, J. et al. Extreme C terminus of G protein α-subunits contains a site that discriminates between Gi-coupled metabotropic glutamate receptors. J. Biol. Chem. 273, 25765–25769 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Kostenis, E., Gomeza, J., Lerche, C. & Wess, J. Genetic analysis of receptor-Gαq coupling selectivity. J. Biol. Chem. 272, 23675–23681 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Conklin, B. R. et al. Carboxyl-terminal mutations of Gqα and Gsα that alter the fidelity of receptor activation. Mol. Pharmacol. 50, 885–890 (1996).

    CAS  PubMed  Google Scholar 

  93. Natochin, M., Muradov, K. G., McEntaffer, R. L. & Artemyev, N. O. Rhodopsin recognition by mutant Gsα containing C-terminal residues of transducin. J. Biol. Chem. 275, 2669–2675 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Kostenis, E., Conklin, B. R. & Wess, J. Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant Gαq subunits. Biochemistry 36, 1487–1495 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Kostenis, E., Degtyarev, M. Y., Conklin, B. R. & Wess, J. The N-terminal extension of Gαq is critical for constraining the selectivity of receptor coupling. J. Biol. Chem. 272, 19107–19110 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Kostenis, E., Zeng, F. Y. & Wess, J. Functional characterization of a series of mutant G protein αq subunits displaying promiscuous receptor coupling properties. J. Biol. Chem. 273, 17886–17892 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Blahos, J. et al. A novel site on the Gα-protein that recognizes heptahelical receptors. J. Biol. Chem. 276, 3262–3269 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Lee, C. H., Katz, A. & Simon, M. I. Multiple regions of Gα16 contribute to the specificity of activation by the C5a receptor. Mol. Pharmacol. 47, 218–223 (1995).

    CAS  PubMed  Google Scholar 

  99. Slessareva, J. E. et al. Closely related G-protein-coupled receptors use multiple and distinct domains on G-protein α-subunits for selective coupling. J. Biol. Chem. 278, 50530–50536 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Heydorn, A. et al. Identification of a novel site within G protein α subunits important for specificity of receptor–G protein interaction. Mol. Pharmacol. 66, 250–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Kostenis, E. et al. A highly conserved glycine within linker I and the extreme C terminus of G protein α subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity. J. Pharmacol. Exp. Ther. 313, 78–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. McIntire, W. E., MacCleery, G. & Garrison, J. C. The G protein β subunit is a determinant in the coupling of Gs to the β1-adrenergic and A2a adenosine receptors. J. Biol. Chem. 276, 15801–15809 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Hou, Y., Azpiazu, I., Smrcka, A. & Gautam, N. Selective role of G protein γ subunits in receptor interaction. J. Biol. Chem. 275, 38961–38964 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Jian, X. et al. Gβγ affinity for bovine rhodopsin is determined by the carboxyl-terminal sequences of the γ subunit. J. Biol. Chem. 276, 48518–48525 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Myung, C. S. et al. Regions in the G protein γ subunit important for interaction with receptors and effectors. Mol. Pharmacol. 69, 877–887 (2005).

    PubMed  Google Scholar 

  106. Yasuda, H., Lindorfer, M. A., Woodfork, K. A., Fletcher, J. E. & Garrison, J. C. Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. J. Biol. Chem. 271, 18588–18595 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Wess, J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther. 80, 231–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Hedin, K. E., Duerson, K. & Clapham, D. E. Specificity of receptor-G protein interactions: searching for the structure behind the signal. Cell. Signal. 5, 505–518 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 11, 346–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Gilchrist, R. L., Ryu, K. S., Ji, I. & Ji, T. H. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J. Biol. Chem. 271, 19283–19287 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Perez, D. M. et al. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol. Pharmacol. 49, 112–122 (1996).

    CAS  PubMed  Google Scholar 

  112. Kenakin, T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol. Sci. 24, 346–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Perez, D. M. & Karnik, S. S. Multiple signaling states of G-protein-coupled receptors. Pharmacol. Rev. 57, 147–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Mukhopadhyay, S. & Howlett, A. C. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol. Pharmacol. 67, 2016–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. McLaughlin, J. N. et al. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J. Biol. Chem. 280, 25048–25059 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Rodbell, M., Krans, H. M., Pohl, S. L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem. 246, 1872–1876 (1971).

    CAS  PubMed  Google Scholar 

  117. Emeis, D., Kuhn, H., Reichert, J. & Hofmann, K. P. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 143, 29–34 (1982).

    Article  CAS  PubMed  Google Scholar 

  118. Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. Eur. J. Biochem. 184, 687–698 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Bourne, H. R. How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9, 134–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Hamm, H. E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Slusarz, R. & Ciarkowski, J. Interaction of class A G protein-coupled receptors with G proteins. Acta Biochim. Pol. 51, 129–136 (2004).

    CAS  PubMed  Google Scholar 

  122. Fotiadis, D. et al. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564, 281–288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ciarkowski, J., Witt, M. & Slusarz, R. A hypothesis for GPCR activation. J. Mol. Model. 11, 407–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Iiri, T., Herzmark, P., Nakamoto, J. M., van Dop, C. & Bourne, H. R. Rapid GDP release from Gsa in patients with gain and loss of endocrine function. Nature 371, 164–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Posner, B. A., Mixon, M. B., Wall, M. A., Sprang, S. R. & Gilman, A. G. The A326S mutant of Giα1 as an approximation of the receptor-bound state. J. Biol. Chem. 273, 21752–21758 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Thomas, T. C., Schmidt, C. J. & Neer, E. J. G-protein αo subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. Natl Acad. Sci. USA 90, 10295–10298 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marin, E. P., Krishna, A. G. & Sakmar, T. P. Rapid activation of transducin by mutations distant from the nucleotide-binding site. Evidence for a mechanistic model of receptor-catalyzed nucleotide exchange by G proteins. J. Biol. Chem. 276, 27400–27405 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Marin, E. P., Krishna, A. G. & Sakmar, T. P. Disruption of the α5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry 41, 6988–6994 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Natochin, M., Moussaif, M. & Artemyev, N. O. Probing the mechanism of rhodopsin-catalyzed transducin activation. J. Neurochem. 77, 202–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Struct. Mol. Biol. 13, 772–777 (2006). SDSL study of Gα demonstrating that a rotation-translation of the α5 helix couples receptor binding to GDP release.

    Article  CAS  Google Scholar 

  131. Ceruso, M. A., Periole, X. & Weinstein, H. Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange. J. Mol. Biol. 338, 469–481 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Johnston, C. A. & Siderovski, D. P. Structural basis for nucleotide exchange on Gai subunits and receptor coupling specificity. Proc. Natl Acad. Sci. USA 104, 2001–2006 (2007). Structure of Ga i1 bound to peptides that accelerate nucleotide exchange as a possible mimic of the receptor-bound conformation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nanoff, C. et al. The carboxyl terminus of the Gα-subunit is the latch for triggered activation of heterotrimeric G proteins. Mol. Pharmacol. 69, 397–405 (2006).

    CAS  PubMed  Google Scholar 

  134. Grishina, G. & Berlot, C. H. Mutations at the domain interface of Gsa impair receptor-mediated activation by altering receptor and guanine nucleotide binding. J. Biol. Chem. 273, 15053–15060 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Pereira, R. & Cerione, R. A. A switch 3 point mutation in the α subunit of transducin yields a unique dominant-negative inhibitor. J. Biol. Chem. 280, 35696–35703 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Barren, B., Natochin, M. & Artemyev, N. O. Mutation R238E in transducin-α yields a GTPase and effector-deficient, but not dominant-negative, G-protein α-subunit. Mol. Vis. 12, 492–498 (2006).

    CAS  PubMed  Google Scholar 

  137. Denker, B. M., Boutin, P. M. & Neer, E. J. Interactions between the amino- and carboxyl-terminal regions of Gα subunits: analysis of mutated Gαo/Gαi2 chimeras. Biochemistry 34, 5544–5553 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Denker, B. M., Schmidt, C. J. & Neer, E. J. Promotion of the GTP-liganded state of the Goα protein by deletion of the C terminus. J. Biol. Chem. 267, 9998–10002 (1992).

    CAS  PubMed  Google Scholar 

  139. Iiri, T., Farfel, Z. & Bourne, H. R. G-protein diseases furnish a model for the turn-on switch. Nature 394, 35–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Rondard, P. et al. Mutant G protein α subunit activated by Gβγ: a model for receptor activation? Proc. Natl Acad. Sci. USA 98, 6150–6155 (2001). Description and scientific support of the lever-arm hypothesis of Gβγ-mediated GDP release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cherfils, J. & Chabre, M. Activation of G-protein Gα subunits by receptors through Gα–Gβ and Gα–Gγ interactions. Trends Biochem. Sci. 28, 13–17 (2003). Description of the gear-shift model for Gβγ-mediated GDP release.

    Article  CAS  PubMed  Google Scholar 

  142. Azpiazu, I. & Gautam, N. G protein γ subunit interaction with a receptor regulates receptor-stimulated nucleotide exchange. J. Biol. Chem. 276, 41742–41747 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Johnston, C. A. et al. Structure of Gαi1 bound to a GDP-selective peptide provides insight into guanine nucleotide exchange. Structure 13, 1069–1080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Medkova, M., Preininger, A. M., Yu, N. J., Hubbell, W. L. & Hamm, H. E. Conformational changes in the amino-terminal helix of the G protein αi1 following dissociation from Gβγ subunit and activation. Biochemistry 41, 9962–9972 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Van Eps, N., Oldham, W. M., Hamm, H. E. & Hubbell, W. L. Structural and dynamical changes in an α-subunit of a heterotrimeric G protein along the activation pathway. Proc. Natl Acad. Sci. USA 103, 16194–16199 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc. Natl Acad. Sci. USA 104, 7927–7932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Warner, D. R., Weng, G., Yu, S., Matalon, R. & Weinstein, L. S. A novel mutation in the switch 3 region of Gsα in a patient with Albright hereditary osteodystrophy impairs GDP binding and receptor activation. J. Biol. Chem. 273, 23976–23983 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Warner, D. R. & Weinstein, L. S. A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein α-subunit with impaired receptor-mediated activation because of elevated GTPase activity. Proc. Natl Acad. Sci. USA 96, 4268–4272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Remmers, A. E., Engel, C., Liu, M. & Neubig, R. R. Interdomain interactions regulate GDP release from heterotrimeric G proteins. Biochemistry 38, 13795–13800 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Marin, E. P. et al. The function of interdomain interactions in controlling nucleotide exchange rates in transducin. J. Biol. Chem. 276, 23873–23880 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Majumdar, S., Ramachandran, S. & Cerione, R. A. Perturbing the linker regions of the α-subunit of transducin: a new class of constitutively active GTP-binding proteins. J. Biol. Chem. 279, 40137–40145 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Birnbaumer, L., Pohl, S. L., Rodbell, M. & Sundby, F. The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J. Biol. Chem. 247, 2038–2043 (1972).

    CAS  PubMed  Google Scholar 

  153. Heck, M. & Hofmann, K. P. Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation. Initial rate analysis based on a double displacement mechanism. J. Biol. Chem. 276, 10000–10009 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Bunemann, M., Frank, M. & Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl Acad. Sci. USA 100, 16077–16082 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  155. Gales, C. et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nature Methods 2, 177–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Digby, G. J., Lober, R. M., Sethi, P. R. & Lambert, N. A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl Acad. Sci. USA 103, 17789–17794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hein, P. et al. GS activation is time-limiting in initiating receptor-mediated signaling. J. Biol. Chem. 281, 33345–33351 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis by Gq promoted by receptor and GTPase-activating proteins. Proc. Natl Acad. Sci. USA 96, 9539–9544 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science 310, 1686–1690 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi E. Hamm.

Related links

Related links

DATABASES

OMIM

Albright's hereditary osteodystrophy

Protein Data Bank

1F88

1FQK

1GOT

1GZM

1TND

2BCJ

2HLB

FURTHER INFORMATION

Heidi E. Hamm's homepage

GPCR database

G protein database

Glossary

G-protein-coupled receptor

(GPCR). A member of the most diverse class of cell-surface receptors that mediate the actions of various hormones, neurotransmitters and sensory stimuli by activating heterotrimeric G proteins.

A guanine-nucleotide-binding protein and GTP hydrolase, the structural conformations and molecular interactions of which are governed by the identity of the bound nucleotide.

Rhodopsin

A GPCR that is activated by the photoisomerization of covalently bound 11-cis-retinal to all-trans-retinal.

DRY motif

A highly conserved Asp-Arg-Tyr motif near the cytoplasmic face of GPCRs that has a crucial role in both the mechanisms of receptor and G protein activation.

Palmitoylation site

A Cys residue to which palmitic acid is covalently attached, which anchors helix VIII to the membrane in GPCRs and creates a fourth intracellular loop.

Inverse agonist

A ligand that decreases the intrinsic activity of a receptor (that is, has the opposite effect of an agonist).

RGS protein

The regulator of G protein signalling (RGS) proteins bind Gα and accelerate GTP hydrolysis by stabilizing the transition-state conformation.

GTPγS

A non-hydrolysable analogue of GTP that is used to study the conformation and molecular interactions of activated Gα.

β-propeller

An all-β-sheet protein fold that is characterized by 4–8 blade-shaped β-sheets arranged toroidally around a central axis.

WD40

A motif of 40 amino acids ending in Trp-Asp, which is found in proteins as several repeated units that fold into a β-propeller and mediate protein–protein interactions.

Coiled-coil

A structural motif in proteins where two or more α-helices wrap around each other like the strands of a rope.

Isoprenylation

The transfer of either a farnesyl or a geranylgeranyl lipid moiety to the C-terminal Cys of a target protein.

Site-directed spin labelling

A technique using site-directed Cys mutagenesis to provide a reactive thiol for the covalent attachment of a paramagnetic probe.

Transducin

A heterotrimeric G protein of the visual transduction system that is composed of Gαtβ1γ1 and activates cGMP phosphodiesterase by binding its inhibitory subunit.

Metarhodopsin II

(MII). An active signalling conformation of rhodopsin (formed after photo-isomerization of retinal) that catalyses nucleotide exchange on transducin.

Pertussis toxin

The exotoxin produced by the bacterium Bordetella pertussis that catalyses ADP ribosylation of the C-terminal Cys of Gαi/o/t, preventing interaction with GPCRs.

ADP ribosylation

An enzymatic covalent modification of a protein. ADP ribose is transferred from NADH.

Ala-scanning mutagenesis

An experimental approach that uses systematic site-directed Ala mutagenesis in a protein to identify residues that are vital for function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldham, W., Hamm, H. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9, 60–71 (2008). https://doi.org/10.1038/nrm2299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing