Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling

Seven-transmembrane receptors

Abstract

Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.

Key Points

  • Seven-transmembrane (7TM) receptors form the largest superfamily of cell-surface receptors. They respond to a wide range of stimulants including light, hormones, neurotransmitters, and odorants.

  • Activation of 7TM receptors leads to the release of GDP and the binding of GTP to the a subunit of the heterotrimeric G protein. The a and bg dimers dissociate and both activate a number of effectors.

  • Several distinct mechanisms are involved in desensitizing responses mediated by 7TM receptors. These include RGS proteins, phosphorylation by second messenger dependent protein kinases and G-protein coupled receptor kinases, and the recruitment of β-arrestins.

  • In addition to roles in desensitizing 7TM receptors, β-arrestins are important for regulating receptor internalization, a process that, at least in some cases, requires β-arrestin ubiquitylation.

  • β-arrestins also serve as scaffolding proteins that facilitate non-classical 7 TM receptor signalling, including some instances of MAPK activation.

  • Recent advances in 7TM receptor biology include the pairing of orphan 7TM receptors with their cognate ligands, the interaction of 7TM receptors with novel partners, the realization that 7TM receptors signal, in part, via G protein independent mechanisms, and the crystallization of the first 7TM receptor, rhodopsin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical examples of seven-transmembrane (7TM)-receptor signalling.
Figure 2: Seven-transmembrane (7TM)-receptor trafficking.
Figure 3: β-arrestin scaffolding of mitogen-activated protein kinase (MAPK) cascades.
Figure 4: Heterodimerization of the GABAB receptor produces a functional receptor.

Similar content being viewed by others

References

  1. Lefkowitz, R. J. The superfamily of heptahelical receptors. Nature Cell Biol. 2, E133–E136 (2000).A historical perspective describing the origins of the field of 7TM receptor signalling in the 1970s and 1980s.

    CAS  PubMed  Google Scholar 

  2. Dixon, R. A. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79 (1986).This paper reports the cloning of the β2-adrenergic receptor, its analogy and 7TM homology with rhodopsin, and speculates on the existence of a large family of such receptors.

    CAS  PubMed  Google Scholar 

  3. Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688 (1991).

    CAS  PubMed  Google Scholar 

  4. Lee, D. K., George, S. R. & O'Dowd, B. F. Novel G-protein-coupled receptor genes expressed in the brain: continued discovery of important therapeutic targets. Expert Opin. Ther. Targets 6, 1–18 (2002).

    Google Scholar 

  5. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).Describes the crystal structure of the only 7TM receptor so far solved.

    CAS  PubMed  Google Scholar 

  6. Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246, 1877–1882 (1971).

    CAS  PubMed  Google Scholar 

  7. Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    CAS  PubMed  Google Scholar 

  8. Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001).

    CAS  PubMed  Google Scholar 

  9. Farahbakhsh, Z. T., Ridge, K. D., Khorana, H. G. & Hubbell, W. L. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry 34, 8812–8819 (1995).

    CAS  PubMed  Google Scholar 

  10. De Vries, L. et al. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000).

    CAS  PubMed  Google Scholar 

  11. Ross, E. M. & Wilkie, T. M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827 (2000).

    CAS  PubMed  Google Scholar 

  12. Klein, S., Reuveni, H. & Levitzki, A. Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc. Natl Acad. Sci. USA 97, 3219–3123 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferguson, S. S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24 (2001).

    CAS  PubMed  Google Scholar 

  14. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).An extensive review of the biochemistry and regulation of the G-protein-coupled-receptor kinases.

    CAS  PubMed  Google Scholar 

  15. Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).Describes a novel mechanism by which the G-protein coupling specificity of 7TM receptors might be regulated by protein-kinase-A-mediated receptor phosphorylation.

    CAS  PubMed  Google Scholar 

  16. Zamah, A. M., Delahunty, M., Luttrell, L. M. & Lefkowitz, R. J. PKA-mediated phosphorylation of the β2-adrenergic receptor regulates its coupling to Gs and Gi: Demonstration in a reconstituted system. J. Biol. Chem. (in the press).

  17. Lawler, O. A., Miggin, S. M. & Kinsella, B. T. Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to Gs-, to Gi-, and to Gq-coupled effector signaling. J. Biol. Chem. 276, 33596–33607 (2001).

    CAS  PubMed  Google Scholar 

  18. Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319 (1998).An extensive review of this universal receptor regulatory system.

    CAS  PubMed  Google Scholar 

  19. Zhang, J. et al. Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels 5, 193–199 (1997).

    CAS  PubMed  Google Scholar 

  20. Winstel, R. et al. Protein kinase cross-talk: membrane targeting of the β-adrenergic receptor kinase by protein kinase C. Proc. Natl Acad. Sci. USA 93, 2105–2109 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cong, M. et al. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J. Biol. Chem. 276, 15192–15199 (2001).

    CAS  PubMed  Google Scholar 

  22. Krueger, K. M., Daaka, Y., Pitcher, J. A. & Lefkowitz, R. J. The role of sequestration in G protein-coupled receptor resensitization. Regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification. J. Biol. Chem. 272, 5–8 (1997).

    CAS  PubMed  Google Scholar 

  23. Pitcher, J. A. et al. The G-protein-coupled receptor phosphatase: a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc. Natl Acad. Sci. USA 92, 8343–8347 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsao, P. & von Zastrow, M. Downregulation of G protein-coupled receptors. Curr. Opin. Neurobiol. 10, 365–369 (2000).

    CAS  PubMed  Google Scholar 

  25. Collins, S., Caron, M. G. & Lefkowitz, R. J. Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu. Rev. Physiol. 53, 497–508 (1991).

    CAS  PubMed  Google Scholar 

  26. Lyubarsky, A. L. et al. RGS9-1 is required for normal inactivation of mouse cone phototransduction. Mol. Vis. 7, 71–78 (2001).

    CAS  PubMed  Google Scholar 

  27. Oliveira-Dos-Santos, A. J. et al. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc. Natl Acad. Sci. USA 97, 12272–12277 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Howard, A. D. et al. Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol. Sci. 22, 132–140 (2001).

    CAS  PubMed  Google Scholar 

  29. Kobilka, B. K. et al. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329, 75–79 (1987).

    CAS  PubMed  Google Scholar 

  30. Fargin, A. et al. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335, 358–360 (1988).

    CAS  PubMed  Google Scholar 

  31. Hsu, S. Y. et al. Activation of orphan receptors by the hormone relaxin. Science 295, 671–674 (2002).

    CAS  PubMed  Google Scholar 

  32. Lembo, P. M. et al. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nature Neurosci. 5, 201–209 (2002).

    CAS  PubMed  Google Scholar 

  33. Chuang, D. M. & Costa, E. Evidence for internalization of the recognition site of β-adrenergic receptors during receptor subsensitivity induced by (−)-isoproterenol. Proc. Natl Acad. Sci. USA 76, 3024–3028 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chuang, D. M. & Costa, E. β-Adrenergic receptors of frog erythrocytes. Biochemical sequelae following stimulation with isoproterenol. Neurochem. Res. 4, 777–793 (1979).

    CAS  PubMed  Google Scholar 

  35. Daaka, Y. et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688 (1998).

    CAS  PubMed  Google Scholar 

  36. Claing, A., Laporte, S. A., Caron, M. G. & Lefkowitz, R. J. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and β-arrestin proteins. Prog. Neurobiol. 66, 61–79 (2002).Reviews the complex mechanisms involved in 7TM-receptor endocytosis.

    CAS  PubMed  Google Scholar 

  37. Claing, A. et al. Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc. Natl Acad. Sci. USA 97, 1119–1124 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smart, E. J. et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lohse, M. J. et al. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 1547–1550 (1990).

    CAS  PubMed  Google Scholar 

  40. Goodman, O. B., Jr et al. β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996).

    CAS  PubMed  Google Scholar 

  41. Laporte, S. A. et al. The β-adrenergic receptor/β-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl Acad. Sci. USA 96, 3712–3717 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaidarov, I. et al. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871–881 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott, M. G., Benmerah, A., Muntaner, O. & Marullo, S. Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J. Biol. Chem. 277, 3552–3559 (2002).

    CAS  PubMed  Google Scholar 

  44. Santini, F., Gaidarov, I. & Keen, J. H. G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J. Cell Biol. 156, 665–676 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Oakley, R. H. et al. Differential affinities of visual arrestin, β-arrestin1, and β-arrestin2 for GPCRs delineate two major classes of receptors. J. Biol. Chem. 275, 17201–17210 (2000).

    CAS  PubMed  Google Scholar 

  46. Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999).

    CAS  PubMed  Google Scholar 

  47. Ahn, S. et al. Src-mediated tyrosine phosphorylation of dynamin is required for β2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J. Biol. Chem. 274, 1185–1188 (1999).

    CAS  PubMed  Google Scholar 

  48. Ahn, S. et al. c-Src dependent tyrosine phosphorylation regulates dynamin self-assembly and receptor-mediated endocytosis. J. Biol. Chem. 277, 26642–26651 (2002).

    CAS  PubMed  Google Scholar 

  49. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313 (2001).

    CAS  PubMed  Google Scholar 

  50. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  51. McDonald, P. H. et al. Identification of NSF as a β-arrestin1-binding protein. Implications for β2-adrenergic receptor regulation. J. Biol. Chem. 274, 10677–10680 (1999).

    CAS  PubMed  Google Scholar 

  52. Claing, A. et al. β-Arrestin-mediated ADP-ribosylation factor 6 activation and β2-adrenergic receptor endocytosis. J. Biol. Chem. 276, 42509–42513 (2001).

    CAS  PubMed  Google Scholar 

  53. Premont, R. T. et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl Acad. Sci. USA 95, 14082–14087 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cong, M. et al. Binding of the β2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling. J. Biol. Chem. 276, 45145–45152 (2001).

    CAS  PubMed  Google Scholar 

  55. Seachrist, J. L. et al. Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J. Biol. Chem. 277, 679–685 (2002).

    CAS  PubMed  Google Scholar 

  56. Kohout, T. A. et al. β-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl Acad. Sci. USA 98, 1601–1606 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marchese, A. & Benovic, J. L. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J. Biol. Chem. 276, 45509–45512 (2001).

    CAS  PubMed  Google Scholar 

  58. Dodge, K. & Scott, J. D. AKAP79 and the evolution of the AKAP model. FEBS Lett. 476, 58–61 (2000).

    CAS  PubMed  Google Scholar 

  59. Fraser, I. D. et al. Assembly of an A kinase-anchoring protein–β(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr. Biol. 10, 409–412 (2000).

    CAS  PubMed  Google Scholar 

  60. Shih, M. et al. Dynamic complexes of β-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J. Biol. Chem. 274, 1588–1595 (1999).

    CAS  PubMed  Google Scholar 

  61. Diviani, D., Soderling, J. & Scott, J. D. AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. J. Biol. Chem. 276, 44247–44257 (2001).

    CAS  PubMed  Google Scholar 

  62. Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).

    CAS  PubMed  Google Scholar 

  63. Brakeman, P. R. et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288 (1997).

    CAS  PubMed  Google Scholar 

  64. Cao, W. et al. Direct binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275, 38131–38134 (2000).

    CAS  PubMed  Google Scholar 

  65. Marrero, M. B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).

    CAS  PubMed  Google Scholar 

  66. Hall, R. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998).

    CAS  PubMed  Google Scholar 

  67. Hall, R. A. et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl Acad. Sci. USA 95, 8496–8501 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, L. A. et al. β1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of β1-adrenergic receptor interaction with N-methyl-d-aspartate receptors. J. Biol. Chem. 275, 38659–38666 (2000).

    CAS  PubMed  Google Scholar 

  69. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).An authoritative review of a mechanism of protein–protein interactions that regulates several GPCR interactions.

    CAS  PubMed  Google Scholar 

  70. Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor Src protein kinase complexes. Science 283, 655–661 (1999).

    CAS  PubMed  Google Scholar 

  71. Imamura, T. et al. β-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J. Biol. Chem. 276, 43663–43667 (2001).

    CAS  PubMed  Google Scholar 

  72. Barlic, J. et al. Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCR1. Nature Immunol. 1, 227–233 (2000).

    CAS  Google Scholar 

  73. DeFea, K. A. et al. β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281 (2000).Describes a role for β-arrestin in mediating ERK activation by 7TM receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McDonald, P. H. et al. β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).

    CAS  PubMed  Google Scholar 

  76. Tohgo, A. et al. β-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. 277, 9429–9436 (2002).

    CAS  PubMed  Google Scholar 

  77. Cerione, R. A. et al. Reconstitution of a hormone-sensitive adenylate cyclase system. The pure β-adrenergic receptor and guanine nucleotide regulatory protein confer hormone responsiveness on the resolved catalytic unit. J. Biol. Chem. 259, 9979–9982 (1984).

    CAS  PubMed  Google Scholar 

  78. Cerione, R. A. et al. The mammalian β2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry 23, 4519–4525 (1984).

    CAS  PubMed  Google Scholar 

  79. Heldin, C. H. Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223 (1995).

    CAS  PubMed  Google Scholar 

  80. Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Devi, L. A. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol. Sci. 22, 532–537 (2001).

    CAS  PubMed  Google Scholar 

  82. Salahpour, A., Angers, S. & Bouvier, M. Functional significance of oligomerization of G-protein-coupled receptors. Trends Endocrinol. Metab. 11, 163–168 (2000).

    CAS  PubMed  Google Scholar 

  83. Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J. 20, 2152–2159 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    CAS  PubMed  Google Scholar 

  85. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    CAS  PubMed  Google Scholar 

  86. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    CAS  PubMed  Google Scholar 

  87. Kuwasako, K. et al. Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and recycling. J. Biol. Chem. 275, 29602–29609 (2000).

    CAS  PubMed  Google Scholar 

  88. Hilairet, S. et al. Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and β-arrestin. J. Biol. Chem. 276, 42182–42190 (2001).

    CAS  PubMed  Google Scholar 

  89. Dean, M. K. et al. Dimerization of G-protein-coupled receptors. J. Med. Chem. 44, 4595–4614 (2001).

    CAS  PubMed  Google Scholar 

  90. Gilman, A. Please check EGO at door. Mol. Interventions 1, 14–21 (2001).

    CAS  Google Scholar 

  91. Brzostowski, J. A. & Kimmel, A. R. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem. Sci. 26, 291–297 (2001).Reviews G-protein-independent signalling by 7TM receptors.

    CAS  PubMed  Google Scholar 

  92. Zheng, B. et al. RGS-PX1, a GAP for GαS and sorting nexin in vesicular trafficking. Science 294, 1939–1942 (2001).

    CAS  PubMed  Google Scholar 

  93. Ma, Y. C. et al. Src tyrosine kinase is a novel direct effector of G proteins. Cell 102, 635–646 (2000).

    CAS  PubMed  Google Scholar 

  94. McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    CAS  PubMed  Google Scholar 

  95. Kwok-Keung Fung, B. & Stryer, L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc. Natl Acad. Sci. USA 77, 2500–2504 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Meng, J., Glick, J. L., Polakis, P. & Casey, P. J. Functional interaction between Gαz and Rap1GAP suggests a novel form of cellular cross-talk. J. Biol. Chem. 274, 36663–36669 (1999).

    CAS  PubMed  Google Scholar 

  97. Katada, T. et al. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J. Biol. Chem. 259, 3568–3577 (1984).

    CAS  PubMed  Google Scholar 

  98. Bokoch, G. M. et al. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3560–3567 (1984).

    CAS  PubMed  Google Scholar 

  99. Chikumi, H. et al. Potent activation of RhoA by Gαq and Gq-coupled receptors. J. Biol. Chem. 277, 27130–27134 (2002).

    CAS  PubMed  Google Scholar 

  100. Booden, M. A., Siderovski, D. P. & Der, C. J. Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Mol. Cell. Biol. 22, 4053–4061 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Smrcka, A. V., Hepler, J. R., Brown, K. O. & Sternweis, P. C. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq . Science 251, 804–807 (1991).

    CAS  PubMed  Google Scholar 

  102. Meigs, T. E., Fields, T. A., McKee, D. D. & Casey, P. J. Interaction of Gα12 and Gα13 with the cytoplasmic domain of cadherin provides a mechanism for β-catenin release. Proc. Natl Acad. Sci. USA 98, 519–524 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kozasa, T. et al. p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13 . Science 280, 2109–2111 (1998).

    CAS  PubMed  Google Scholar 

  104. Boyer, J. L., Waldo, G. L. & Harden, T. K. βγ-Subunit activation of G-protein-regulated phospholipase C. J. Biol. Chem. 267, 25451–25456 (1992).

    CAS  PubMed  Google Scholar 

  105. Camps, M. et al. Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360, 684–686 (1992).

    CAS  PubMed  Google Scholar 

  106. Pitcher, J. A. et al. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264–1267 (1992).

    CAS  PubMed  Google Scholar 

  107. Tang, W. J. & Gilman, A. G. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254, 1500–1503 (1991).

    CAS  PubMed  Google Scholar 

  108. Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77, 83–93 (1994).

    CAS  PubMed  Google Scholar 

  109. Logothetis, D. E. et al. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325, 321–326 (1987).The first demonstration in a mammalian system of the then-radical idea that G-protein βγ dimers could directly activate effectors.

    CAS  PubMed  Google Scholar 

  110. Chen, C. K. et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc. Natl Acad. Sci. USA 96, 3718–3722 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jaber, M. et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl Acad. Sci. USA 93, 12974–12979 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA 95, 7000–7005 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Peppel, K. et al. G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J. Biol. Chem. 272, 25425–25428 (1997).

    CAS  PubMed  Google Scholar 

  114. Walker, J. K. et al. Altered airway and cardiac responses in mice lacking G protein-coupled receptor kinase 3. Am. J. Physiol. 276, R1214–R1221 (1999).

    CAS  PubMed  Google Scholar 

  115. Gainetdinov, R. R. et al. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 24, 1029–1036 (1999).

    CAS  PubMed  Google Scholar 

  116. Fong, A. M. et al. Defective lymphocyte chemotaxis in β-arrestin2- and GRK6-deficient mice. Proc. Natl Acad. Sci. USA 99, 7478–7483 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Conner, D. A. et al. β-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to β-adrenergic stimulation. Circ. Res. 81, 1021–1026 (1997).

    CAS  PubMed  Google Scholar 

  118. Bohn, L. M. et al. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286, 2495–2498 (1999).

    CAS  PubMed  Google Scholar 

  119. Bohn, L. M. et al. μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720–723 (2000).

    CAS  PubMed  Google Scholar 

  120. Dohlman, H. G. & Thorner, J. W. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70, 703–754 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lefkowitz.

Related links

Related links

DATABASES

LocusLink

5HT1A

5-hydroxytryptamine receptor 1A

β2 adrenergic receptor

β-arrestin 1

β-arrestin 2

AKAP250

AKAP79

AKAP-Lbc

ARF-nucleotide-binding-site opener

angiotensin 1A receptor

AT1A

calcitonin-receptor-like

CXCR4

Edg-2

Edg-4

Edg-7

ERK1

ERK2

Frizzled

G21

glucagon

GLUT4

GRK1

GRK2

GRK3

GRK4

GRK6

GRK7

growth-hormone-releasing peptide

12

q

s

Homer

interleukin-8

JAK2

JNK1

JNK2

JNK3

MDM2

MEK1

mGLUR1

mGLUR5

mGLUR7

mouse double minute 2

NHERF2

NSF

proenkephalin

prostacyclin receptor

Rab5

RAMP1

RAMP2

RAMP3

RGS2

RGS9

rhodopsin

secretin

T1R1

T1R2

T1R3

V2 vasopressin receptor

vasoactive intestinal peptide

<i>Saccharomyces</i> genome database

Ste5

Ste20

Sst2

FlyBase

InaD

TRP

InterPro

SH3

Glossary

ODORANT

A chemical substance with a distinct smell. Odorant receptors are a large group of 7TM receptors concentrated in the nasal epithelium that respond to a wide range of odours.

HETEROTRIMERIC G PROTEINS

Guanine-nucleotide regulatory protein complexes composed of α and βγ subunits. They are responsible for transducing signals from 7TM receptors to effectors, including adenylyl cyclases and phospholipases.

PARACRINE

Describing or relating to a regulatory cell that secretes an agonist into intercellular spaces in which it diffuses to a target cell other than the one that produces it.

GUANINE-NUCLEOTIDE-EXCHANGE FACTORS

Proteins that facilitate the replacement of GDP with GTP in the nucleotide-binding pocket of a GTP-binding protein.

HOMOLOGOUS RECOMBINATION

The process by which segments of DNA are exchanged between two DNA duplexes that share high sequence similarity.

GTPASE-ACTIVATING PROTEINS

(GAPs) Proteins that inactivate GTP-binding proteins, such as heterotrimeric G proteins and Ras-family members, by increasing their rate of GTP hydrolysis.

APELIN PEPTIDES

Vasoactive peptides originally purified from bovine stomach extracts. These peptides interact with the recently de-orphanized 7TM receptor APJ.

TRACE AMINES

Biogenic amines derived from amino-acid metabolism. Once thought of primarily as inactive metabolites, trace amines including tyramine and octopamine are now known to be important neuromodulators.

CLATHRIN

The main component of the coat that is associated with clathrin-coated vesicles, which are involved in membrane transport both in the endocytic and biosynthetic pathways.

CAVEOLAE

Specialized rafts that contain the protein caveolin and form a flask-shaped, cholesterol-rich invagination of the plasma membrane. This might mediate the uptake of some extracellular materials and is probably involved in cell signalling.

ADAPTOR PROTEIN

A protein that augments cellular responses by recruiting other proteins to a complex. They usually contain several protein–protein interaction domains.

AP-2

A member of a family of so-called 'clathrin adaptor proteins', which facilitate the early stages of endocytic vesicle formation through their ability to bind clathrin coats.

DYNAMIN

A GTPase that takes part in endocytosis. It seems to be involved in severing the connection between the nascent vesicle and the donor membrane.

ENDOSOMES

Organelles that carry materials ingested by endocytosis and pass them to lysosomes for degradation or recycle them to the cell surface.

UBIQUITIN

A 76-amino-acid protein that can be covalently attached to specific lysine residues in target proteins. This often forms multimeric polyubiquitin chains, which are thought to target the protein for destruction.

PROTEASOME

Protein complex responsible for degrading intracellular proteins that have been tagged for destruction by the addition of ubiquitin.

E1

An enzyme that activates the carboxy-terminal glycine of the small protein ubiquitin, or ubiquitin-like proteins, allowing them to form a high-energy bond to a specific cysteine residue of the E1.

E2

An enzyme that accepts ubiquitin or a ubiquitin-like protein from an E1 and transfers it to the substrate, mostly using an E3 enzyme.

E3

E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating ubiquitylation of the selected substrates.

ADP-RIBOSYLATION FACTOR

(ARF) A small GTPase that regulates the assembly of coats and vesicle budding.

SCAFFOLDING PROTEINS

Proteins that have specific binding sites and are therefore important in the assembly and function of larger molecular complexes.

LYSOPHOSPHATIDIC ACID

(LPA) Any phosphatidic acid that is deacylated at positions 1 or 2.

STRESS FIBRES

Axial bundles of F-actin connecting focal adhesions.

PDZ DOMAINS

Protein-interaction domains that often occur in scaffolding proteins and are named after the founding members of this protein family (Psd-95, discs-large and ZO-1).

OPIOID RECEPTORS

These 7TM receptors are produced at high levels in the nervous system. They are important for modulating pain responses. Many analgesic drugs target these receptors, including codeine, morphine and heroin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, K., Premont, R. & Lefkowitz, R. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3, 639–650 (2002). https://doi.org/10.1038/nrm908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing