Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial protein toxins that modify host regulatory GTPases

Key Points

  • Many bacterial pathogens produce protein toxins and effectors that target host regulatory GTPases such as those belonging to the RHO family, which control the actin cytoskeleton. As a result, the pathogens weaken the epithelial and endothelial barriers and manipulate the host immune response, leading to bacterial invasion and dissemination in tissues.

  • Regulatory GTPases switch between an active, GTP-bound form that is attached to the cell membrane through an isoprenyl moiety, and an inactive, GDP-bound form in the cytosol. This GTPase cycle is controlled by various classes of host proteins such as guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs).

  • Various bacterial effectors can affect the activity of host GTPases by mimicking host regulators of the GTPase cycle through mechanisms that do not involve covalent modifications of the target proteins. For example, effectors of the SopE and WXXXE families act in a GEF-like manner, whereas YopE from Yersinia pseudotuberculosis is a GAP mimic.

  • Other bacterial proteins modulate the activity of regulatory GTPases by covalent modifications. Bacterial protein toxins of the C3 family inhibit the regulatory activity of RHO-family proteins by ADP-ribosylation of a specific amino acid residue, whereas the toxin complex (Tc) toxin TccC5 from Photorhabdus luminescens stimulates the activity of RHO-family proteins by ADP-ribosylating a different residue.

  • Various protein toxins from Clostridium spp. inactivate regulatory GTPases by addition of a glucose or an N-acetylglucosamine residue.

  • The adenylylation (also known as 'AMP-ylation') of RHO-family proteins by the toxins VopS and IbpA (immunoglobulin-binding protein A) from Vibrio parahemolyticus and Histophilus somni, respectively, leads to inhibition of downstream signalling of these host GTPases, whereas the same reaction on a different amino acid residue, catalysed by DrrA from Legionella pneumophila, leads to stimulation of RAB1A regulatory activity.

  • YopT from Yersinia spp. is a protease that cleaves RHO-family proteins directly upstream of the carboxy-terminal cysteine residue to which the isoprenyl moiety is attached. As a result, the RHO-family protein is released from the membrane and therefore inactivated.

  • RHO-family proteins can be persistently activated by deamidation and transglutamination catalysed by the cytotoxic necrotizing factors (Cnfs) of Escherichia coli and Y. pseudotuberculosis and the dermonecrotizing toxin (Dnt) of Bordetella spp. In addition, Pasteurella multocida toxin (Pmt) activates heterotrimeric guanine-nucleotide-binding (G) proteins, a family of multisubunit regulatory GTPases, by deamidation.

Abstract

Many bacterial pathogens produce protein toxins to outmanoeuvre the immune system of the host. Some of these proteins target regulatory GTPases such as those belonging to the RHO family, which control the actin cytoskeleton of the host cell. In this Review, I discuss a diversity of mechanisms that are used by bacterial effectors and toxins to modulate the activity of host GTPases, with a focus on covalent modifications such as ADP-ribosylation, glucosylation, adenylylation, proteolysis, deamidation and transglutamination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of the RHO-family GTPase cycle.
Figure 2: Bacterial effectors that modify RHO-family GTPases.
Figure 3: Photorhabdus luminescens toxins act on the cytoskeleton.
Figure 4: Structure of Escherichia coli cytotoxic necrotizing factor 1 and Pasturella multocida toxin.

Similar content being viewed by others

References

  1. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nature Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  Google Scholar 

  2. Lemichez, E., Lecuit, M., Nassif, X. & Bourdoulous, S. Breaking the wall: targeting of the endothelium by pathogenic bacteria. Nature Rev. Microbiol. 8, 93–104 (2010).

    Article  CAS  Google Scholar 

  3. Insall, R. H. & Machesky, L. M. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Bokoch, G. M. Regulation of innate immunity by Rho GTPases. Trends Cell Biol. 15, 163–171 (2005). An excellent review about the role of RHO-family proteins in leukocyte function.

    Article  CAS  PubMed  Google Scholar 

  5. Thrasher, A. J. & Burns, S. O. WASP: a key immunological multitasker. Nature Rev. Immunol. 10, 182–192 (2010).

    Article  CAS  Google Scholar 

  6. Harwood, N. E. & Batista, F. D. The cytoskeleton coordinates the early events of B-cell activation. Cold Spring Harb. Perspect. Biol. 3, a002360 (2010).

    Google Scholar 

  7. Beemiller, P. & Krummel, M. F. Mediation of T-cell activation by actin meshworks. Cold Spring Harb. Perspect. Biol. 2, a002444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998). A classical review about role of RHO-family proteins in regulation of the actin cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  9. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Rev. Mol. Cell Biol. 6, 167–180 (2005).

    Article  CAS  Google Scholar 

  12. Seabra, M. C. Membrane association and targeting of prenylated Ras-like GTPases. Cell. Signal. 10, 167–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Tcherkezian, J. & Lamarche-Vane, N. Current knowledge of the large RhoGAP family of proteins. Biol. Cell 99, 67–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. DerMardirossian, C. & Bokoch, G. M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Aktories, K., Braun, U., Rösener, S., Just, I. & Hall, A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem. Biophys. Res. Commun. 158, 209–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Chardin, P. et al. The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J. 8, 1087–1092 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aktories, K. & Barbieri, J. T. Bacterial cytotoxins: targeting eukaryotic switches. Nature Rev. Microbiol. 3, 397–410 (2005).

    Article  CAS  Google Scholar 

  18. Boquet, P. & Lemichez, E. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol. 13, 238–246 (2003).

    CAS  PubMed  Google Scholar 

  19. Paterson, H. F. et al. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J. Cell Biol. 111, 1001–1007 (1990). An important early study on the role of RHO-family proteins in cytoskeleton regulation, and also the first usage of C3 as cell-biological tool.

    Article  CAS  PubMed  Google Scholar 

  20. Ridley, A. J. & Hall, A. Snails, Swiss, and serum: the solution for Rac 'n' Rho. Cell 116, S23–S25 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998). An excellent study on the role of SopE as a GEF of RHO-family proteins.

    Article  CAS  PubMed  Google Scholar 

  22. Buchwald, G. et al. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21, 3286–3295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stevens, M. P. et al. A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol. 185, 4992–4996 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohya, K., Handa, Y., Ogawa, M., Suzuki, M. & Sasakawa, C. IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J. Biol. Chem. 280, 24022–24034 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Klink, B. U. et al. Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. J. Biol. Chem. 285, 17197–17208 (2010). An in-depth analysis of the molecular mechanism of RHO-family activation by IpgB2. This work contributes greatly to our understanding of GEF functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arbeloa, A. et al. EspM2 is a RhoA guanine nucleotide exchange factor. Cell. Microbiol. 12, 654–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bulgin, R. R., Arbeloa, A., Chung, J. C. & Frankel, G. EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell. Microbiol. 11, 217–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ohlson, M. B. et al. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4, 434–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hume, P. J. & Koronakis, V. Mimicry is the sincerest form of flattery? Cell Host Microbe 4, 411–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Machner, M. P. & Isberg, R. R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol. 8, 971–977 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Y. et al. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc. Natl Acad. Sci. USA 107, 4699–4704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schoebel, S., Oesterlin, L. K., Blankenfeldt, W., Goody, R. S. & Itzen, A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 36, 1060–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Selyunin, A. S. et al. The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature 469, 107–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999). The first paper to describe the GAP function of bacterial effectors.

    Article  CAS  PubMed  Google Scholar 

  38. von Pawel-Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Goehring, U.-M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun. 68, 6066–6068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng, Q. & Barbieri, J. T. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu. Rev. Microbiol. 62, 271–288 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Fehr, D. et al. Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton. J. Biol. Chem. 282, 28843–28852 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Aktories, K., Weller, U. & Chhatwal, G. S. Clostridium botulinum type C produces a novel ADP- ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett. 212, 109–113 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Rubin, E. J., Gill, D. M., Boquet, P. & Popoff, M. R. Functional modification of a 21-kilodalton G protein when ADP- ribosylated by exoenzyme C3 of Clostridium botulinum. Mol. Cell. Biol. 8, 418–426 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sekine, A., Fujiwara, M. & Narumiya, S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J. Biol. Chem. 264, 8602–8605 (1989).

    CAS  PubMed  Google Scholar 

  47. Molinari, G. et al. Localization of the C3-like ADP-ribosyltransferase from Staphylococcus aureus during bacterial invasion of mammalian cells. Infect. Immun. 74, 3673–3677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fahrer, J. et al. Selective and specific internalization of clostridial C3 ADP-ribosyltransferases into macrophages and monocytes. Cell. Microbiol. 12, 233–247 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Genth, H., Schmidt, M., Gerhard, R., Aktories, K. & Just, I. Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochem. Biophys. Res. Commun. 302, 127–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Genth, H. et al. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J. Biol. Chem. 278, 28523–28527 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Sehr, P. et al. Glucosylation and ADP-ribosylation of Rho proteins; effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37, 5296–5304 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Wiegers, W. et al. Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur. J. Cell Biol. 54, 237–245 (1991).

    CAS  PubMed  Google Scholar 

  53. Vogelsgesang, M., Pautsch, A. & Aktories, K. C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins. Naunyn Schmiedebergs Arch. Pharmacol. 374, 347–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Boyer, L. et al. Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors. J. Cell Biol. 173, 809–819 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munro, P. et al. The Staphylococcus aureus epidermal cell differentiation inhibitor toxin promotes formation of infection foci in a mouse model of bacteremia. Infect. Immun. 78, 3404–3411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pautsch, A., Vogelsgesang, M., Trankle, J., Herrmann, C. & Aktories, K. Crystal structure of the C3bot–RalA complex reveals a novel type of action of a bacterial exoenzyme. EMBO J. 24, 3670–3680 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. & Gamblin, S. J. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Lang, A. E. et al. Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327, 1139–1142 (2010). A seminal paper about the molecular mechanism of P. luminescens Tc toxins.

    Article  CAS  PubMed  Google Scholar 

  60. Kelly, C. P. & LaMont, J. T. Clostridium difficile — more difficult than ever. N. Engl. J. Med. 359, 1932–1940 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Rupnik, M. Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol. Rev. 32, 541–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995). The discovery of glucosylation as a new molecular mechanism of bacterial protein toxins.

    Article  CAS  PubMed  Google Scholar 

  64. Popoff, M. R. et al. Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J. Biol. Chem. 271, 10217–10224 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Just, I., Selzer, J., Hofmann, F., Green, G. A. & Aktories, K. Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J. Biol. Chem. 271, 10149–10153 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Selzer, J. et al. Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J. Biol. Chem. 271, 25173–25177 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Nagahama, M. et al. Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infect. Immun. 79, 905–910 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Vetter, I. R., Hofmann, F., Wohlgemuth, S., Herrmann, C. & Just, I. Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J. Mol. Biol. 301, 1091–1095 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Geyer, M., Wilde, C., Selzer, J., Aktories, K. & Kalbitzer, H. R. Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for the effector loop conformations observed by NMR spectroscopy. Biochemistry 42, 11951–11959 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Genth, H., Aktories, K. & Just, I. Monoglucosylation of RhoA at Threonine-37 blocks cytosol-membrane cycling. J. Biol. Chem. 274, 29050–29056 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Belyi, Y. et al. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc. Natl Acad. Sci. USA 103, 16953–16958 (2006). The identification of EF1α as the target of L. pneumophila glucosyltransferases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009). The discovery that adenylylation is the molecular mechanism of VopS, opening a new field in toxin studies.

    Article  CAS  PubMed  Google Scholar 

  73. Kinch, L. N., Yarbrough, M. L., Orth, K. & Grishin, N. V. Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS ONE 4, e5818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Casselli, T., Lynch, T., Southward, C. M., Jones, B. W. & DeVinney, R. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun. 76, 2202–2211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Worby, C. A. et al. The Fic domain: regulation of cell signaling by adenylylation. Mol. Cell 34, 93–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xiao, J., Worby, C. A., Mattoo, S., Sankaran, B. & Dixon, J. E. Structural basis of Fic-mediated adenylylation. Nature Struct. Mol. Biol. 17, 1004–1010 (2010). An excellent study on the interaction of adenylylating effectors with their protein substrates.

    Article  CAS  Google Scholar 

  77. Bitar, D. M., Molmeret, M. & Abu, K. Y. Molecular and cell biology of Legionella pneumophila. Int. J. Med. Microbiol. 293, 519–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Molofsky, A. B. & Swanson, M. S. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol. 53, 29–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Machner, M. P. & Isberg, R. R. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318, 974–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Brombacher, E. et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Muller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010). The characterization of DrrA as an adenylylating enzyme acting on RAB proteins.

    Article  PubMed  Google Scholar 

  82. Roy, C. R. & Mukherjee, S. Bacterial FIC proteins AMP up infection. Sci. Signal. 2, e14 (2009).

    Article  Google Scholar 

  83. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cycteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002). The elucidation of the molecular mechanism of a novel family of bacterial effectors as cysteine proteases.

    Article  CAS  PubMed  Google Scholar 

  84. Shao, F. et al. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc. Natl Acad. Sci. USA 100, 904–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sorg, I., Goehring, U.-M., Aktories, K. & Schmidt, G. Recombinant Yersinia YopT leads to uncoupling of RhoA-effector interaction. Infect. Immun. 69, 7535–7543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aepfelbacher, M. et al. Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J. Biol. Chem. 278, 33217–33223 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Mohammadi, S. & Isberg, R. R. Yersinia pseudotuberculosis virulence determinants invasin, YopE, and YopT modulate RhoG activity and localization. Infect. Immun. 77, 4771–4782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Michaelson, D. et al. Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J. Cell Biol. 181, 485–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lanning, C. C., Ruiz-Velasco, R. & Williams, C. L. Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1. J. Biol. Chem. 278, 12495–12506 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Lanning, C. C., Daddona, J. L., Ruiz-Velasco, R., Shafer, S. H. & Williams, C. L. The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J. Biol. Chem. 279, 44197–44210 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Bourguignon, L. Y. W., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with Tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Brugirard-Ricaud, K. et al. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell. Microbiol. 7, 363–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Dowen, R. H., Engel, J. L., Shao, F., Ecker, J. R. & Dixon, J. E. A family of bacterial cysteine protease type III effectors utilizes acylation-dependent and -independent strategies to localize to plasma membranes. J. Biol. Chem. 284, 15867–15879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oswald, E. et al. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc. Natl Acad. Sci. USA 91, 3814–3818 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Oswald, E. & de Rycke, J. A single protein of 110 kDa is associated with the multinucleating and necrotizing activity coded by the Vir plasmid of Escherichia coli. FEMS Microbiol. Lett. 68, 279–284 (1990).

    CAS  Google Scholar 

  96. Stoll, T., Markwirth, G., Reipschlager, S. & Schmidt, G. A new member of a growing toxin family – Escherichia coli cytotoxic necrotizing factor 3 (CNF3). Toxicon 54, 745–753 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Lockman, H. A., Gillespie, R. A., Baker, B. D. & Shakhnovich, E. Yersinia pseudotuberculosis produces a cytotoxic necrotizing factor. Infect. Immun. 70, 2708–2714 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lemichez, E., Flatau, G., Bruzzone, M., Boquet, P. & Gauthier, M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol. Microbiol. 24, 1061–1070 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, K. J., Chung, J. W. & Kim, K. S. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem. 280, 1360–1368 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Blumenthal, B., Hoffmann, C., Aktories, K., Backert, S. & Schmidt, G. The cytotoxic necrotizing factors from Yersinia pseudotuberculosis and from Escherichia coli bind to different cellular receptors but take the same route to the cytosol. Infect. Immun. 75, 3344–3353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Knust, Z., Blumenthal, B., Aktories, K. & Schmidt, G. Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity. Infect. Immun. 77, 1835–1841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schmidt, G. et al. Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387, 725–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997). The identification of deamidation as a novel molecular mechanism of Cnf proteins (along with work in reference 102).

    Article  CAS  PubMed  Google Scholar 

  104. Buetow, L., Flatau, G., Chiu, K., Boquet, P. & Ghosh, P. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nature Struct. Biol. 8, 584–588 (2001). The first structural insights into deamidation catalysed by Cnf proteins.

    Article  CAS  PubMed  Google Scholar 

  105. Lerm, M., Schmidt, G., Goehring, U.-M., Schirmer, J. & Aktories, K. Identification of the region of Rho involved in substrate recognition by Escherichia coli cytotoxic necrotizing factor 1 (CNF1). J. Biol. Chem. 274, 28999–29004 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Falzano, L., Fiorentini, C., Boquet, P. & Donelli, G. Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (CNF1) with cultured cells. Cytotechnology 11, S56–S58 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Oswald, E., de Rycke, J., Guillot, J. F. & Boivin, R. Cytotoxic effect of multinucleation in HeLa cell cultures associated with the presence of Vir plasmid in Escherichia coli strains. FEMS Microbiol. Lett. 58, 95–100 (1989).

    Article  CAS  Google Scholar 

  108. Denko, N., Langland, R., Barton, M. & Lieberman, M. A. Uncoupling of S-phase and mitosis by recombinant cytotoxic necrotizing factor 2 (CNF2). Exp. Cell Res. 234, 132–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Malorni, W. & Fiorentini, C. Is the Rac GTPase-activating toxin CNF1 a smart hijacker of host cell fate? FASEB J. 20, 606–609 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Hoffmann, C. et al. The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J. Biol. Chem. 279, 16026–16032 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Lerm, M., Pop, M., Fritz, G., Aktories, K. & Schmidt, G. Proteasomal degradation of cytotoxic necrotizing factor 1-activated Rac. Infect. Immun. 70, 4053–4058 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Boyer, L. et al. CNF1-induced ubiquitylation and proteasome destruction of activated RhoA is impaired in Smurf1-/- cells. Mol. Biol. Cell 17, 2489–2497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Doye, A. et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553–564 (2002). An in-depth analysis of the degradation of RHO-family proteins after Cnf1 treatment.

    Article  CAS  PubMed  Google Scholar 

  114. Munro, P. et al. Activation and proteasomal degradation of Rho GTPases by CNF1 elicit a controlled inflammatory response. J. Biol. Chem. 279, 35849–35857 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Horiguchi, Y., Nakai, T. & Kume, K. Purification and characterization of Bordetella bronchiseptica dermonecrotic toxin. Microb. Pathogen. 6, 361–368 (1989).

    Article  CAS  Google Scholar 

  116. Fukui-Miyazaki, A., Ohnishi, S., Kamitani, S., Abe, H. & Horiguchi, Y. Bordetella dermonecrotic toxin binds to target cells via the N-terminal 30 amino acids. Microbiol. Immunol. 55, 154–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Matsuzawa, T. et al. Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasma in an acidification-independent manner. J. Biol. Chem. 279, 2866–2872 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Schmidt, G., Goehring, U.-M., Schirmer, J., Lerm, M. & Aktories, K. Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for Rho GTPases. J. Biol. Chem. 274, 31875–31881 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Masuda, M. et al. Activation of Rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J. 19, 521–530 (2000). The identification of the substrates for the transglutaminase activity of Dnt.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schmidt, G., Selzer, J., Lerm, M. & Aktories, K. The Rho-deamidating cytotoxic-necrotizing factor CNF1 from Escherichia coli possesses transglutaminase activity. Cysteine-866 and histidine-881 are essential for enzyme activity. J. Biol. Chem. 273, 13669–13674 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Cassel, D. & Pfeuffer, T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl Acad. Sci. USA 75, 2669–2673 (1978). A classical paper on the molecular mechanism of cholera toxin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lax, A. J. et al. The Pasteurella multocida toxin interacts with signalling pathways to perturb cell growth and differentiation. Int. J. Med. Microbiol. 293, 505–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Orth, J. H. et al. Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc. Natl Acad. Sci. USA 106, 7179–7184 (2009). A seminal paper on the identification of Pmt as a deamidase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Majumdar, S., Ramachandran, S. & Cerione, R. A. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins. J. Biol. Chem. 281, 9219–9226 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Van Dop, C., Tsubokawa, M., Bourne, H. R. & Ramachandran, J. Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J. Biol. Chem. 259, 696–698 (1984).

    CAS  PubMed  Google Scholar 

  127. Freissmuth, M. & Gilman, A. G. Mutations of GSα designed to alter the reactivity of the protein with bacterial toxins. Substitutions at ARG187 result in loss of GTPase activity. J. Biol. Chem. 264, 21907–21914 (1989).

    CAS  PubMed  Google Scholar 

  128. Sprang, S. R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997). An excellent early review on structure–function analyses of G proteins.

    Article  CAS  PubMed  Google Scholar 

  129. Wilson, B. A., Zhu, X., Ho, M. & Lu, L. Pasteurella multocida toxin activates the inositol triphosphate signaling pathway in Xenopus oocytes via Gqα-coupled phospholipase C-β1. J. Biol. Chem. 272, 1268–1275 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Orth, J. H., Aktories, K. & Kubatzky, K. F. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J. Biol. Chem. 282, 3050–3057 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Preuss, I., Kurig, B., Nürnberg, B., Orth, J. H. & Aktories, K. Pasteurella multocida toxin activates Gβγ dimers of heterotrimeric G proteins. Cell. Signal. 21, 551–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Preuss, I., Hildebrand, D., Orth, J. H., Aktories, K. & Kubatzky, K. F. Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways. Cell. Microbiol. 12, 1174–1185 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Orth, J. H., Lang, S., Taniguchi, M. & Aktories, K. Pasteurella multocida toxin-induced activation of RhoA is mediated via two families of Gα proteins, Gαq and Gα12/13 . J. Biol. Chem. 280, 36701–36707 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Rozengurt, E., Higgins, T., Chanter, N., Lax, A. J. & Staddon, J. M. Pasteurella multocida toxin: potent mitogen for cultured fibroblasts. Proc. Natl Acad. Sci. USA 87, 123–127 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Staddon, J. M. et al. Pasteurella multocida toxin, a potent mitogen, increases inositol 1,4,5-triphosphate and mobilizes Ca2+ in swiss 3T3 cells. J. Biol. Chem. 266, 4840–4847 (1991). An early study identifying the action of Pmt.

    CAS  PubMed  Google Scholar 

  136. Zywietz, A., Gohla, A., Schmelz, M., Schultz, G. & Offermanns, S. Pleiotropic effects of Pasteurella multocida toxin are mediated by Gq-dependent and -independent mechanisms. Involvement of Gq but not G11. J. Biol. Chem. 276, 3840–3845 (2001). The introduction of gene deletions in Pmt studies.

    Article  CAS  PubMed  Google Scholar 

  137. Hofmann, F., Busch, C., Prepens, U., Just, I. & Aktories, K. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem. 272, 11074–11078 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Greco, A. et al. Carbohydrate recognition by Clostridium difficile toxin A. Nature Struct. Mol. Biol. 13, 460–461 (2006).

    Article  CAS  Google Scholar 

  139. Egerer, M., Giesemann, T., Jank, T., Satchell, K. J. & Aktories, K. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on a cysteine protease activity. J. Biol. Chem. 282, 25314–25321 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Genisyuerek, S. et al. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Mol. Microbiol. 79, 1643–1654 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Reineke, J. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007). The identification of InsP 6 as an essential cofactor for the processing of clostridial glucosylating toxins.

    Article  CAS  PubMed  Google Scholar 

  142. Pfeifer, G. et al. Cellular uptake of Clostridium difficile toxin B: translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J. Biol. Chem. 278, 44535–44541 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Pruitt, R. N., Chambers, M. G., Ng, K. K., Ohi, M. D. & Lacy, D. B. Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc. Natl Acad. Sci. USA 107, 13467–13472 (2010). An impressive study on the power of negative-stain microscopy and three-dimensional restructuring for the structure–function analysis of clostridial toxins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Milligan, G. & Kostenis, E. Heterotrimeric G-proteins: a short history. Br. J. Pharmacol. 147, S46–S55 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kitadokoro, K. et al. Crystal structures reveal a thiol protease-like catalytic triad in the C-terminal region of Pasteurella multocida toxin. Proc. Natl Acad. Sci. USA 104, 5139–5144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Upadhyay, A. et al. The guanine-nucleotide-exchange factor BopE from Burkholderia pseudomallei adopts a compact version of the Salmonella SopE/SopE2 fold and undergoes a closed-to-open conformational change upon interaction with Cdc42. Biochem. J. 411, 485–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Huang, Z. et al. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nature Struct. Mol. Biol. 16, 853–860 (2009).

    Article  CAS  Google Scholar 

  148. Arbeloa, A. et al. Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell. Microbiol. 10, 1429–1441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sixma, T. K. et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351, 371–377 (1991). A seminal paper on the structure of cholera toxin.

    Article  CAS  PubMed  Google Scholar 

  150. Flatau, G., Landraud, L., Boquet, P., Bruzzone, M. & Munro, P. Deamidation of RhoA glutamine 63 by the Escherichia coli CNF1 toxin requires a short sequence of the GTPase switch 2 domain. Biochem. Biophys. Res. Commun. 267, 588–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Horiguchi, Y. et al. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc. Natl Acad. Sci. USA 94, 11623–11626 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gierschik, P. ADP-ribosylation of signal-transducing guanine nucleotide-binding proteins by pertussis toxin. Curr. Top. Microbiol. Immunol. 175, 69–98 (1992).

    CAS  PubMed  Google Scholar 

  153. Just, I. & Gerhard, R. Large clostridial cytotoxins. Rev. Physiol. Biochem. Pharmacol. 152, 23–47 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work from the K.A. laboratory that is described in this article was financially supported by the German Research Foundation (DFG) and by the Centre for Biological Signalling Studies (BIOSS) at the University of Freiburg, Germany.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

DATABASES

1A2B

1HQ0

2EBF

FURTHER INFORMATION

Klaus Aktories's homepage

Glossary

GTPases

GTP-binding proteins that have GTP hydrolysis activity and act as molecular switches, dependent on the bound nucleotide (GDP-bound proteins are in the off state, and GTP-bound proteins are in the on state).

Isoprenylated tail

The carboxy-terminal tail of the protein to which an isoprenyl moiety has been attached at the carboxy-terminal cysteine residue as a post-translational modification. Isoprenylation of many small GTPases, including RHO-family proteins, is essential for membrane binding. A C20 isoprenyl moiety (geranylgeranyl) is usually attached to RHO-family proteins.

RAB

A family of small GTPases that are involved in membrane and vesicle traffic.

ARF

(ADP-ribosylating factor). A family of small GTPases that are involved in membrane and vesicle traffic. These factors were initially recognized as cofactors for the ADP-ribosylation that is catalysed by the cholera toxin.

Switch I and II regions

Regions of GTP-binding proteins that change the conformation of these proteins between the GDP-bound (inactive) and GTP-bound (active) state. Accordingly, effectors recognize these regions in particular. In RHOA, the switch I region covers residues 27–42, and the switch II region, residues 59–73.

DBL

A family of typical guanine nucleotide exchange factors acting on the RHO-family GTPases.

RAS

A family of small GTPases that are involved in proliferation and differentiation. This term is also sometimes (but not here) used to refer to a protein superfamily of small GTPases that includes the RAS, RAB, ARF (ADP-ribosylating factor), RHO and RAN protein families, among others.

RALA

One of the RAL proteins, a group of GTP-binding proteins in the RAS family. RAL proteins are involved in proliferation, motility and protein sorting.

CRK

(CT10 regulator of kinase). A family of adaptor proteins that mediate the signalling involved in focal adhesion and the regulation of phagocytosis.

Stress fibres

Contractile bundles of polymerized actin that also contain myosin motor proteins. The formation of stress fibres is induced by activation of RHOA.

Pull-down assays

Precipitation experiments in which one protein or domain of interest is coupled to beads as a bait to pull down those proteins that interact with it. In the case of RHO-family proteins, their interactions can be studied by using the RHO-binding domains of their effectors as bait.

WNT signalling

A pathway that transfers a signal from membrane receptors to the nucleus and is involved in embryogenesis and tumour development.

Avirulence factors

Bacterial factors that induce a strong antimicrobial response in host plants, with the consequence that the plant is protected. The factors seem to be virulence factors under certain conditions.

Laminin receptor

A cell membrane protein that is the receptor for the extracellular matrix glycoprotein laminin and is involved in cell adhesion to the basement membrane.

Lamellipodia

Broad, membrane ruffling-like processes that contain actin and are induced by the activation of RAC proteins.

Filopodia

Thin, finger-like cell protrusions that contain actin and are induced by activation of the GTPase cell division cycle 42 (CDC42).

Mitotic catastrophe

Mitotic-linked cell death as a consequence of the inappropriate entry of cells into mitosis.

Polyubiquitylation

The attachment of several 8 kDa ubiquitin peptide molecules onto lysine residues of target proteins by a three-enzyme cascade. It is often the prerequisite for the proteasomal degradation of the target proteins.

Furin

A serine endoprotease that cleaves endogenous precursor proteins. Furin is also involved in the processing of anthrax toxin, Pseudomonas exotoxin A and envelope proteins of various viruses.

Dynamin

A large GTPase that is regulated by oligomerization and forms a collar-like structure around invaginations of membranes during the pinch-off process of vesicle formation.

Polyamines

Metabolites such as putrescine, spermine and spermidine that are derived from arginine and methionine. They seem to be involved in many cellular processes, such as proliferation and migration.

RHO kinases

Endogenous effectors of RHO-family proteins; RHO kinases are activated by the GTP-bound form of RHO-family GTPases and regulate smooth muscle contraction and many signalling processes that are related to the cytoskeleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktories, K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9, 487–498 (2011). https://doi.org/10.1038/nrmicro2592

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2592

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology