Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ca2+-activated K+ channels: molecular determinants and function of the SK family

Key Points

  • Ca2+-activated K+ (KCa) channels have evolved to use Ca2+ to regulate their opening and closing (gating), and to support the ability of the cell to finely regulate the amount of Ca2+ that is able to enter. This review describes the molecular and functional properties of KCa channels of small and intermediate conductance (SK and IK channels, respectively).

  • The genes that encode the three SK channels KCa2.1, KCa2.2 and KCa2.3 belong to the KCNN gene family. The closely related family member KCa3.1 was named IK on the basis of its intermediate single-channel conductance. The structures of the SK-channel genes are complex, and there is evidence of alternative splicing.

  • SK channels have a similar topology to members of the voltage-gated (Kv) K+ channel superfamily, which consist of six transmembrane segments with the pore located between segments 5 and 6. The S4 segment, which confers voltage sensitivity to the Kv channel, contains a reduced number of positively charged amino acids in SK channels, which might explain their observed voltage independence.

  • KCa2.1, KCa2.2, and KCa2.3 channels are predominantly expressed in the nervous system, whereas the KCa3.1 channel is mainly expressed in blood and epithelial cells, and in some peripheral neurons. The expression patterns in the brain indicate that specific SK-channel subunits contribute to neuronal excitability and function in different regions, and possibly in different neuronal compartments.

  • Ca2+ sensitivity seems to be conferred on the KCa2.2 channel by the intimate interaction of calmodulin (CaM) with each of the four subunits, and it is generally accepted that CaM has a role in the gating of all KCa2 and KCa3 channels. CaM is also essential for the assembly and trafficking of SK-channel subunits.

  • In central neurons, SK channels mediate an apamin-sensitive K+ current that is known as IAHP, which contributes to the generation of an afterhyperpolarization of medium duration (mAHP) that follows single, or bursts of, action potentials. Depending on the neuronal subtype and its contingent of ion channels, the IAHP might contribute to the instantaneous firing rate, set the tonic firing frequency or regulate burst firing and rhythmic oscillatory activity.

  • SK channels are functionally coupled to Ca2+ sources: apamin-sensitive currents are coupled to the activation of different subtypes of voltage-gated Ca2+ channels in a cell-type-specific manner, and there is also evidence for SK-channel activation by Ca2+ that is released from intracellular stores.

  • The SK-channel blocker apamin has been used in behavioural studies to investigate the role of the SK channels in cognitive functions. SK-channel blockade improves performance on hippocampus-dependent learning tasks, and it seems to facilitate the induction of long-term potentiation in the hippocampal formation by increasing postsynaptic neuronal excitability.

  • Questions that remain to be answered concern the molecular make-up of native SK channels in different brain regions, their localization in specific neuronal compartments and their functional coupling and interplay with Ca2+ sources. A better understanding of SK-channel physiology might also clarify their hypothesized role in various pathological conditions.

Abstract

Ca2+-activated K+ (KCa) channels of small (SK) and intermediate (IK) conductance are present in a wide range of excitable and non-excitable cells. On activation by low concentrations of Ca2+, they open, which results in hyperpolarization of the membrane potential and changes in cellular excitability. KCa-channel activation also counteracts further increases in intracellular Ca2+, thereby regulating the concentration of this ubiquitous intracellular messenger in space and time. KCa channels have various functions, including the regulation of neuronal firing properties, blood flow and cell proliferation. The cloning of SK and IK channels has prompted investigations into their gating, pharmacology and organization into calcium-signalling domains, and has provided a framework that can be used to correlate molecularly identified KCa channels with their native currents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene structure and single-channel properties of SK channels.
Figure 2: Interaction of SK channels with calmodulin and calcium–calmodulin-dependent gating.
Figure 3: SK-channel expression in the CNS.
Figure 4: Effect of SK-channel enhancers on the excitability of hippocampal neurons.
Figure 5: SK channels, firing patterns and spike-timing precision.
Figure 6: Physical and functional coupling of SK channels to Calcium sources.

Similar content being viewed by others

References

  1. Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. NY Acad. Sci. 868, 233–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Gardos, G. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30, 653–654 (1958).

    Article  CAS  PubMed  Google Scholar 

  4. Meech, R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. A 42, 493–499 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Krnjevic, K. & Lisiewicz, A. Injections of calcium ions into spinal motoneurones. J. Physiol. (Lond.) 225, 363–390 (1972).

    Article  CAS  Google Scholar 

  6. Alger, B. E. & Nicoll, R. A. Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210, 1122–1124 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Hotson, J. R. & Prince, D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Schwartzkroin, P. A. & Stafstrom, C. E. Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells. Science 210, 1125–1126 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Blatz, A. L. & Magleby, K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323, 718–720 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Lancaster, B. & Adams, P. R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 55, 1268–1282 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Gutman, G. A. et al. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. 55, 583–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kohler, M. et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273, 1709–1714 (1996). This paper reports the cloning and initial characterization of the SK channels, and was crucial for the further development of research on these channels and the currents that they generate.

    Article  CAS  PubMed  Google Scholar 

  13. Ishii, T. M. et al. A human intermediate conductance calcium-activated potassium channel. Proc. Natl Acad. Sci. USA 94, 11651–11656 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joiner, W. J., Wang, L. Y., Tang, M. D. & Kaczmarek, L. K. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc. Natl Acad. Sci. USA 94, 11013–11018 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Logsdon, N. J., Kang, J., Togo, J. A., Christian, E. P. & Aiyar, J. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272, 32723–32726 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Litt, M., LaMorticella, D., Bond, C. T. & Adelman, J. P. Gene structure and chromosome mapping of the human small-conductance calcium-activated potassium channel SK1 gene (KCNN1). Cytogenet. Cell Genet. 86, 70–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Dror, V. et al. hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol. Psychiatry 4, 254–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Shmukler, B. E. et al. Structure and complex transcription pattern of the mouse SK1 K(Ca) channel gene, KCNN1. Biochim. Biophys. Acta 1518, 36–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, B. M. et al. Calmodulin binding to the C-terminus of the small-conductance Ca2+-activated K+ channel hSK1 is affected by alternative splicing. Biochemistry 40, 3189–3195 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Tomita, H. et al. Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Mol. Psychiatry 8, 524–535 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kolski-Andreaco, A. et al. SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels. J. Biol. Chem. 279, 6893–6904 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Wittekindt, O. H. et al. An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol. Pharmacol. 65, 788–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Shakkottai, V. G. et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest. 113, 582–590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villalobos, C., Shakkottai, V. G., Chandy, K. G., Michelhaugh, S. K. & Andrade, R. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J. Neurosci. 24, 3537–3542 (2004). In this paper, transgenic mice that overexpressed an SK-channel splice variant, and biolistic transfection of brain slices, were used to show that the sI AHP is not generated by SK channels in neocortical neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirschberg, B., Maylie, J., Adelman, J. P. & Marrion, N. V. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111, 565–581 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998). In this work, CaM was identified as a constitutive SK-channel subunit that is responsible for the Ca2+-dependent activation of the channels.

    Article  CAS  PubMed  Google Scholar 

  27. Soh, H. & Park, C. S. Inwardly rectifying current–voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biophys. J. 80, 2207–2215 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soh, H. & Park, C. S. Localization of divalent cation-binding site in the pore of a small conductance Ca2+-activated K+ channel and its role in determining current-voltage relationship. Biophys. J. 83, 2528–2538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eilers, J., Callewaert, G., Armstrong, C. & Konnerth, A. Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 92, 10272–10276 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robbins, J., Cloues, R. & Brown, D. A. Intracellular Mg2+ inhibits the IP3-activated IKCa in NG108-15 cells. Why intracellular citrate can be useful for recording IKCa . Pflugers Arch. 420, 347–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Alvarez-Leefmans, F. J., Giraldez, F. & Gamino, S. M. Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can. J. Physiol. Pharmacol. 65, 915–925 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Fanger, C. M. et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J. Biol. Chem. 274, 5746–5754 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Keen, J. E. et al. Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19, 8830–8838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Picton, C., Klee, C. B. & Cohen, P. Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits. Eur. J. Biochem. 111, 553–561 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Schumacher, M. A., Rivard, A. F., Bachinger, H. P. & Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410, 1120–1124 (2001). X-ray crystallography revealed the structure of the CaM-binding region in the SK2 channel in the presence of Ca2+. On the basis of the structural analysis and more biochemical evidence, a model for SK-channel opening was proposed.

    Article  CAS  PubMed  Google Scholar 

  37. Wissmann, R. et al. A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin. J. Biol. Chem. 277, 4558–4564 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schumacher, M. A., Crum, M. & Miller, M. C. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure (Camb.) 12, 849–860 (2004).

    Article  CAS  Google Scholar 

  39. Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Liang, H. et al. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39, 951–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bruening-Wright, A., Schumacher, M. A., Adelman, J. P. & Maylie, J. Localization of the activation gate for small conductance Ca2+-activated K+ channels. J. Neurosci. 22, 6499–6506 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  PubMed  Google Scholar 

  44. Fanger, C. M. et al. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J. Biol. Chem. 276, 12249–12256 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Miller, M. J. et al. Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem. 276, 27753–27756 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Khanna, R., Chang, M. C., Joiner, W. J., Kaczmarek, L. K. & Schlichter, L. C. hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J. Biol. Chem. 274, 14838–14849 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Joiner, W. J., Khanna, R., Schlichter, L. C. & Kaczmarek, L. K. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels. J. Biol. Chem. 276, 37980–37985 (2001).

    CAS  PubMed  Google Scholar 

  48. Lee, W. S., Ngo-Anh, T. J., Bruening-Wright, A., Maylie, J. & Adelman, J. P. Small conductance Ca2+-activated K+ channels and calmodulin: cell surface expression and gating. J. Biol. Chem. 278, 25940–25946 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Jenke, M. et al. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J. 22, 395–403 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Syme, C. A. et al. Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal lucine zipper. J. Biol. Chem. 278, 8476–8486 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Ishii, T. M., Maylie, J. & Adelman, J. P. Determinants of apamin and d-tubocurarine block in SK potassium channels. J. Biol. Chem. 272, 23195–23200 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Bowden, S. E., Fletcher, S., Loane, D. J. & Marrion, N. V. Somatic colocalization of rat SK1 and D class (Cav1. 2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J. Neurosci. 21, RC175 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benton, D. C. et al. Small conductance Ca2+-activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells. J. Physiol. (Lond.) 553, 13–19 (2003).

    Article  CAS  Google Scholar 

  54. D'Hoedt, D., Hirzel, K., Pedarzani, P. & Stocker, M. Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. J. Biol. Chem. 279, 12088–12092 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Monaghan, A. S. et al. The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J. Biol. Chem. 279, 1003–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Sailer, C. A. et al. Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. J. Neurosci. 22, 9698–9707 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmid-Antomarchi, H. et al. Molecular properties of the apamin-binding component of the Ca2+-dependent K+ channel. Radiation-inactivation, affinity labelling and solubilization. Eur. J. Biochem. 142, 1–6 (1984).

    Article  CAS  PubMed  Google Scholar 

  58. Seagar, M. J., Labbe-Jullie, C., Granier, C., Van Rietschoten, J. & Couraud, F. Photoaffinity labeling of components of the apamin-sensitive K+ channel in neuronal membranes. J. Biol. Chem. 260, 3895–3898 (1985).

    CAS  PubMed  Google Scholar 

  59. Wadsworth, J. D., Doorty, K. B. & Strong, P. N. Comparable 30-kDa apamin binding polypeptides may fulfill equivalent roles within putative subtypes of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 269, 18053–18061 (1994).

    CAS  PubMed  Google Scholar 

  60. Stocker, M. & Pedarzani, P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci. 15, 476–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Tacconi, S. et al. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity. Neuroscience 102, 209–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Hosseini, R., Benton, D. C., Dunn, P. M., Jenkinson, D. H. & Moss, G. W. SK3 is an important component of K+ channels mediating the afterhyperpolarization in cultured rat SCG neurones. J. Physiol. (Lond.) 535, 323–334 (2001).

    Article  CAS  Google Scholar 

  63. Boettger, M. K. et al. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 125, 252–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Arnold, S. J. et al. Decreased potassium channel IK1 and its regulator neurotrophin-3 (NT-3) in inflamed human bowel. Neuroreport 14, 191–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Sailer, C. A., Kaufmann, W. A., Marksteiner, J. & Knaus, H. G. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol. Cell. Neurosci. 26, 458–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl Acad. Sci. USA 96, 4662–4667 (1999). In this paper, the existence of the apamin-sensitive I AHP current in hippocampal pyramidal neurons was shown for the first time. For a long time, it had been believed that only the sI AHP was present in these neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pedarzani, P., Kulik, A., Muller, M., Ballanyi, K. & Stocker, M. Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones. J. Physiol. (Lond.) 527, 283–290 (2000).

    Article  CAS  Google Scholar 

  68. Wolfart, J., Neuhoff, H., Franz, O. & Roeper, J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 21, 3443–3456 (2001). In this paper, patch-clamp recordings, single-cell RT-PCR and immunohistochemistry revealed the function of SK3 channels in midbrain dopaminergic neurons, which is to control the frequency and precision of spontaneous firing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roncarati, R., Di Chio, M., Sava, A., Terstappen, G. C. & Fumagalli, G. Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction. Neuroscience 104, 253–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Obermair, G. J., Kaufmann, W. A., Knaus, H. G. & Flucher, B. E. The small conductance Ca2+-activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons. Eur. J. Neurosci. 17, 721–731 (2003).

    Article  PubMed  Google Scholar 

  71. Schwindt, P. C. et al. Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 59, 424–449 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Storm, J. F. An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 409, 171–190 (1989).

    Article  CAS  Google Scholar 

  73. Lancaster, B. & Nicoll, R. A. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. (Lond.) 389, 187–203 (1987).

    Article  CAS  Google Scholar 

  74. Kramar, E. A. et al. A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurotrophic factor. J. Neurosci. 24, 5151–5161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sah, P. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Vogalis, F., Storm, J. F. & Lancaster, B. SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur. J. Neurosci. 18, 3155–3166 (2003).

    Article  PubMed  Google Scholar 

  77. Stocker, M., Hirzel, K., D'Hoedt, D. & Pedarzani, P. Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43, 933–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Gehlert, D. R. & Gackenheimer, S. L. Comparison of the distribution of binding sites for the potassium channel ligands [125I]apamin, [125I]charybdotoxin and [125I]iodoglyburide in the rat brain. Neuroscience 52, 191–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Edgerton, J. R. & Reinhart, P. H. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J. Physiol. (Lond.) 548, 53–69 (2003).

    Article  CAS  Google Scholar 

  80. Cingolani, L. A., Gymnopoulos, M., Boccaccio, A., Stocker, M. & Pedarzani, P. Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J. Neurosci. 22, 4456–4467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Womack, M. D. & Khodakhah, K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J. Neurosci. 23, 2600–2607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hallworth, N. E., Wilson, C. J. & Bevan, M. D. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J. Neurosci. 23, 7525–7542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bond, C. T. et al. SK knockout mice reveal the identity of calcium-dependent AHP currents. J. Neurosci. 24, 5301–5306 (2004). Transgenic mice lacking specific SK-channel subunits were used to analyse the contribution of SK1, SK2 and SK3 to the AHP currents in hippocampal pyramidal neurons. This work shows that SK2 is the main subunit that mediates I AHP , whereas none of the SK-channel subunits is responsible for the generation of sI AHP in these cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pedarzani, P. et al. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 276, 9762–9769 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, L. & McBain, C. J. Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J. Physiol. (Lond.) 488, 661–672 (1995).

    Article  CAS  Google Scholar 

  86. Savic, N., Pedarzani, P. & Sciancalepore, M. Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region. J. Neurophysiol. 85, 1986–1997 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Loewy, A. D. & Spyer, K. M. in Central Regulation of Autonomic Functions (eds Loewy, A. D. & Spyer, K. M.) 68–87 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  88. Bosch, M. A., Kelly, M. J. & Ronnekleiv, O. K. Distribution, neuronal colocalization, and 17β-E2 modulation of small conductance calcium-activated K+ channel (SK3) mRNA in the guinea pig brain. Endocrinology 143, 1097–1107 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Kirkpatrick, K. & Bourque, C. W. Activity dependence and functional role of the apamin-sensitive K+ current in rat supraoptic neurones in vitro. J. Physiol. (Lond.) 494, 389–398 (1996).

    Article  CAS  Google Scholar 

  90. Cloues, R. K. & Sather, W. A. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J. Neurosci. 23, 1593–1604 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bennett, B. D., Callaway, J. C. & Wilson, C. J. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci. 20, 8493–8503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sourdet, V., Russier, M., Daoudal, G., Ankri, N. & Debanne, D. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J. Neurosci. 23, 10238–10248 (2003). This work shows that SK channels are modulated by metabotropic glutamate receptors (mGluR5), thereby contributing to the long-term potentiation of intrinsic excitability that is observed in neocortical neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bond, C. T. et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289, 1942–1946 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Catterall, W. A. Structure and regulation of voltage gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Sah, P. Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons. Proc. R. Soc. Lond. B 260, 105–111 (1995).

    Article  CAS  Google Scholar 

  96. Pineda, J. C., Waters, R. S. & Foehring, R. C. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J. Neurophysiol. 79, 2522–2534 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Wolfart, J. & Roeper, J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J. Neurosci. 22, 3404–3413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Umemiya, M. & Berger, A. J. Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons. J. Neurosci. 14, 5652–5660 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Williams, S., Serafin, M., Muhlethaler, M. & Bernheim, L. Distinct contributions of high- and low-voltage-activated calcium currents to afterhyperpolarizations in cholinergic nucleus basalis neurons of the guinea pig. J. Neurosci. 17, 7307–7315 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marrion, N. V. & Tavalin, S. J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905 (1998). In this study, single-channel analysis showed the close proximity of Ca2+-activated K+ channels and Ca2+ channels in acutely dissociated neurons of the hippocampus.

    Article  CAS  PubMed  Google Scholar 

  101. Hirschberg, B., Maylie, J., Adelman, J. P. & Marrion, N. V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys. J. 77, 1905–1913 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oliver, D. et al. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26, 595–601 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82 (1998). This paper reports the first example of a slow inhibitory action of synaptically released glutamate in the mammalian brain. In ventral midbrain dopamine neurons, stimulation of a metabotropic glutamate receptor triggered release of intracellular Ca2+ and activation of SK channels that hyperpolarized the membrane.

    Article  CAS  PubMed  Google Scholar 

  104. Akita, T. & Kuba, K. Functional triads consisting of ryanodine receptors, Ca2+ channels, and Ca2+-activated K+ channels in bullfrog sympathetic neurons. Plastic modulation of action potential. J. Gen. Physiol. 116, 697–720 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sandler, V. M. & Barbara, J. G. Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons. J. Neurosci. 19, 4325–4336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Messier, C. et al. Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes. Brain Res. 551, 322–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Deschaux, O., Bizot, J. C. & Goyffon, M. Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 222, 159–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Deschaux, O. & Bizot, J. C. Effect of apamin, a selective blocker of Ca2+-activated K+-channel, on habituation and passive avoidance responses in rats. Neurosci. Lett. 227, 57–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. van der Staay, F. J., Fanelli, R. J., Blokland, A. & Schmidt, B. H. Behavioral effects of apamin, a selective inhibitor of the SKCa-channel, in mice and rats. Neurosci. Biobehav. Rev. 23, 1087–1110 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Fournier, C., Kourrich, S., Soumireu-Mourat, B. & Mourre, C. Apamin improves reference memory but not procedural memory in rats by blocking small conductance Ca2+-activated K+ channels in an olfactory discrimination task. Behav. Brain Res. 121, 81–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Ikonen, S. & Riekkinen, P., Jr. Effects of apamin on memory processing of hippocampal-lesioned mice. Eur. J. Pharmacol. 382, 151–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Behnisch, T. & Reymann, K. G. Inhibition of apamin-sensitive calcium dependent potassium channels facilitate the induction of long-term potentiation in the CA1 region of rat hippocampus in vitro. Neurosci. Lett. 253, 91–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Norris, C. M., Halpain, S. & Foster, T. C. Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J. Neurosci. 18, 3171–3179 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stackman, R. W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22, 10163–10171 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blank, T., Nijholt, I., Kye, M. J., Radulovic, J. & Spiess, J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nature Neurosci. 6, 911–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Sah, P. & McLachlan, E. M. Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7, 257–264 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Lasser-Ross, N., Ross, W. N. & Yarom, Y. Activity-dependent [Ca2+]i changes in guinea pig vagal motoneurons: relationship to the slow afterhyperpolarization. J. Neurophysiol. 78, 825–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Sah, P. & Clements, J. D. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons. J. Neurosci. 19, 3657–3664 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Madison, D. V. & Nicoll, R. A. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638 (1982).

    Article  CAS  PubMed  Google Scholar 

  120. Madison, D. V. & Nicoll, R. A. Cyclic adenosine 3′,5′-monophosphate mediates β-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 372, 245–259 (1986).

    Article  CAS  Google Scholar 

  121. Pedarzani, P. & Storm, J. F. PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 11, 1023–1035 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Haas, H. L. & Rose, G. M. Noradrenaline blocks potassium conductance in rat dentate granule cells in vitro. Neurosci. Lett. 78, 171–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Schwindt, P. C., Spain, W. J. & Crill, W. E. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J. Neurophysiol. 67, 216–226 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Osmanovic, S. S. & Shefner, S. A. Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro. J. Physiol. (Lond.) 469, 89–109 (1993).

    Article  CAS  Google Scholar 

  125. Womble, M. D. & Moises, H. C. Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala. Brain Res. 621, 87–96 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Faber, E. S. & Sah, P. Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J. Neurosci. 22, 1618–1628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Strobaek, D., Jorgensen, T. D., Christophersen, P., Ahring, P. K. & Olesen, S. P. Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. Br. J. Pharmacol. 129, 991–999 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shah, M. & Haylett, D. G. The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br. J. Pharmacol. 129, 627–630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lorenzon, N. M. & Foehring, R. C. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67, 350–363 (1992).

    Article  CAS  PubMed  Google Scholar 

  130. Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  Google Scholar 

  131. Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the slo gene family. Neuron 37, 765–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Grunnet, M. et al. Pharmacological modulation of SK3 channels. Neuropharmacology 40, 879–887 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Finlayson, K. et al. Characterisation of [125I]-apamin binding sites in rat brain membranes with HE293 cells transfected with SK channel subtypes. Neuropharmacology 41, 341–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Chicchi, G. G. et al. Purification and characterization of a unique potent inhibitor of apamin binding from Leiurus-Quinquestriatus-Hebraeus venom. J. Biol. Chem. 263, 10192–10197 (1988).

    CAS  PubMed  Google Scholar 

  135. Zerrouk, H., Mansuelle, P., Benslimane, A., Rochat, H. & Martin-Eauclaire, M. F. Characterization of a new leiurotoxin I-like scorpion toxin. PO5 from Androctonus mauretanicus mauretanicus. FEBS Lett. 320, 189–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Pedarzani, P. et al. Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem. 277, 46101–46109 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Shakkottai, V. G. et al. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276, 43145–43151 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Liegeois, J. F. et al. Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr. Med. Chem. 10, 625–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Dreixler, J. C. et al. Block of rat brain recombinant SK channels by tricyclic antidepressants and related compounds. Eur. J. Pharmacol. 401, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Terstappen, G. C., Pula, G., Carignani, C., Chen, M. X. & Roncarati, R. Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology 40, 772–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Terstappen, G. C. et al. The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3. Neurosci. Lett. 346, 85–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Syme, C. A., Gerlach, A. C., Singh, A. K. & Devor, D. C. Pharmacological activation of cloned intermediate- and small-conductance Ca2+-activated K+ channels. Am. J. Physiol. Cell Physiol. 278, C570–C581 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Cao, Y. J., Dreixler, J. C., Couey, J. J. & Houamed, K. M. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur. J. Pharmacol. 449, 47–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Klocker, N., Oliver, D., Ruppersberg, J. P., Knaus, H. G. & Fakler, B. Developmental expression of the small-conductance Ca2+-activated potassium channel SK2 in the rat retina. Mol. Cell. Neurosci. 17, 514–520 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, G. Y., Olshausen, B. A. & Chalupa, L. M. Differential effects of apamin- and charybdotoxin-sensitive K+ conductances on spontaneous discharge patterns of developing retinal ganglion cells. J. Neurosci. 19, 2609–2618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shatz, C. J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).

    Article  CAS  PubMed  Google Scholar 

  147. Glowatzki, E. & Fuchs, P. A. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288, 2366–2368 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Steel, K. P. & Kros, C. J. A genetic approach to understanding auditory function. Nature Genet. 27, 143–149 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank my colleagues J. P. Adelman, R. Andrade and K. G. Chandy for sharing their results before publication. I am grateful to A. C. Dolphin and D. A. Brown, and to the members of my group, D. D'hoedt, T. Ferraro, K. Hirzel, D. Kerschensteiner and A. Nolting, for comments on the manuscript. I am indebted to P. Pedarzani for invaluable discussions and constructive criticism on this review. Research in my laboratory is supported by the Wellcome Trust. The author is a Wellcome Trust Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

KCa2.1

KCa2.2

KCa2.3

KCa3.1

Molecular Modeling Database

Crystal structure of the CaM-CaMBD in the presence of Ca2+ of the of the Ca2+-activated potassium channel (SK2) (16082)

Solution structure (NMR of the CaMBD of the Ca2+-activated potassium channel (SK2) (18380)

FURTHER INFORMATION

Stocker laboratory homepage

Potassium channel diversity

Potassium channel gene family nomenclature

Calmodulin target database

Glossary

MULTIMERS, HOMOMERS AND HETEROMERS

Channels that are formed by the assembly of two or more subunits (multimers), of the same type (homomers) or of different types (heteromers).

SELECTIVITY

The property of a channel that allows only some ions to pass through its pore; other ions might be able to pass with great difficulty, and others not at all.

AFTERHYPERPOLARIZATION

(AHP) Hyperpolarization of the membrane potential following single or multiple action potentials.

SPIKE-FREQUENCY ADAPTATION

Progressive reduction in the frequency of action-potential firing or, in extreme cases, complete cessation of firing after some initial action potentials in response to constant depolarization above the firing threshold.

PARALOGOUS

Paralogous genes are genes that occur within the same species that have arisen from a common ancestor by duplication and subsequent divergence. For example, the mouse α-globin and β-globin genes are paralogues.

ORTHOLOGOUS

Genes in different species are orthologues if they have evolved from a single common ancestral gene. For example, the β-globin genes of mouse, rat and human are orthologues. Note that several genes in the mouse or rat might have a single orthologue in another species, and vice versa.

ALTERNATIVE SPLICING

A post-transcriptional process through which a pre-mRNA molecule, containing several introns and exons, can lead to different functional mRNA molecules, and consequently proteins, that originate from a single gene.

GIANT PATCH

Giant membrane patches are commonly obtained to enable studies of membrane currents of cells that are too large to record with conventional patch-clamp methods.

INWARD RECTIFICATION

A phenomenon that describes the diode-like behaviour of a channel that shows an increased conductance with hyperpolarization and a decreased conductance with depolarization. The channels are called inward rectifiers because current flows through them more easily into, than out of, the cell.

EF-HAND MOTIF

A common Ca2+-binding motif. It consists of a 12-amino-acid loop with a 12-amino-acid α-helix at either end, providing octahedral coordination for Ca2+.

IQ MOTIF

Proteins that contain IQ motifs typically bind CaM in the absence of Ca2+, although there are some exceptions. The IQ motif has the sequence (F/I/L/V)QXXX(R/K)GXXX(R/K)XX(F/I/L/V/W/Y). Characters within parentheses can substitute for each other, and X can be any amino acid.

1:8:14 AND 1:5:8:14 MOTIF

Subclasses of the 1:14 motif, where two hydrophobic residues are spaced 12 amino acids apart, with additional anchoring residues in the middle. These terms refer to sequences that mediate Ca2+-dependent calmodulin binding. The 1:8:14 motif has the sequence (F/I/L/V/W)XXXXXX(F/A/I/L/V/W)XXXXX(F/I/L/V/W), and the 1:5:8:14 motif has the sequence (F/I/L/V/W/)XXX(F/A/I/L/V/W)XX(F/A/I/L/V/W)XXXXX(F/I/L/V/W). Characters within parentheses can substitute for each other, and X can be any amino acid.

CYSTEINE-ACCESSIBILITY MUTAGENESIS

A method that is used to characterize channels and binding sites. Single native amino acids are mutated to cysteine, and the ability of sulphydryl reacting and coordinating reagents to react with the cysteines is then tested.

IC50

The IC50 is commonly defined as the drug concentration at which the response has decreased to 50% of the initial response.

CHIMERIC SUBUNIT/CHANNEL

A subunit that contains sequences that are derived from at least two different genes. In the case of a multimeric channel, the assembly of chimeric subunits then results in the generation of a chimeric channel.

IN SITU HYBRIDIZATION

A method for labelling and localizing mRNA within cells.

RT-PCR

Reverse transcriptase-polymerase chain reaction. This method allows amplification (PCR) of mRNA sequence after synthesis of a complementary DNA molecule by reverse transcriptase (RT).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stocker, M. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5, 758–770 (2004). https://doi.org/10.1038/nrn1516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing