Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors

Key Points

  • The principal action of GABA (γ-aminobutyric acid) in the adult CNS is to increase membrane permeability to chloride and bicarbonate ions. The increase in membrane conductance and hyperpolarization that is associated with the activation of postsynaptic GABA type A (GABAA) receptors following brief exposure to a high concentration of GABA released from presynaptic vesicles underlies what is known as 'phasic' inhibition.

  • In recent years, it has become evident that GABA receptor activation can also take place in a much less spatially and temporally restricted manner. GABA that escapes from the synaptic cleft can activate receptors on presynaptic terminals or at neighbouring synapses on the same or adjacent neurons, and low concentrations of GABA in the extracellular space can result in the persistent 'tonic' activation of GABAA receptors.

  • One important function of phasic inhibition is the generation of rhythmic activities in neuronal networks. A notable example is the action of cortical and hippocampal basket cells that innervate the perisomatic regions of pyramidal cells. These interneurons have an essential role in generating and maintaining theta and gamma frequency network oscillations.

  • Tonic activation of GABAA receptors causes a persistent increase in the cell's input conductance, thereby affecting the magnitude and duration of the voltage response to an injected current. For a given excitatory input, the size and duration of the excitatory postsynaptic potential (EPSP) will be reduced, and the temporal and spatial window over which signal integration can occur will be narrowed, thereby reducing the probability that an action potential will be generated.

  • The different modes of GABAA receptor activation seem to be determined by the subcellular location and biophysical properties of receptor subtypes. Receptors that contain a γ2 subunit in association with α1, α2 or α3 subunits are the predominant subtypes that mediate phasic synaptic inhibition. Receptors that contain α4, α5 or α6 subunits are predominantly or exclusively extrasynaptic, implying that they are more likely to mediate tonic inhibition.

  • The macroscopic and microscopic properties of GABAA receptors depend on their subunit composition. The most important biophysical differences between receptors that mediate phasic inhibition and those that have been implicated in tonic inhibition are their affinities for GABA and the speed and extent of their desensitization.

  • The pattern of phasic inhibition is determined by the number, variety and activity of presynaptic GABA-releasing neurons, but the relationship between neuronal activity and tonic inhibition is less clear. In the hippocampus and cerebellum, changes in presynaptic activity or release can modify the magnitude of the tonic conductance. GABA transporters have an important influence on ambient GABA release, so it is possible that tonic inhibition could also be modulated by changes in uptake.

  • Many processes modulate GABAA receptor number or function and are likely to be relevant to both phasic and tonic inhibition. Reversible post-translational modifications, such as phosphorylation and palmitoylation, affect both the properties and subcellular location of the receptors. In addition, clustering of GABAA receptors changes both their kinetic behaviour and single-channel conductance.

  • Just as the biophysical properties of GABAA receptors are determined by their subunit composition, so are their pharmacological properties. Differences in subunit composition between synaptic and extra- or perisynaptic receptors are reflected in differential modulation of phasic and tonic inhibition by benzodiazepine site ligands and other clinically relevant drugs.

Abstract

The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (γ-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABAA (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABAA receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of GABAA receptor activation.
Figure 2: Effects of tonic inhibition on granule cell excitability.
Figure 3: GABAA receptors in the mouse cerebellum.
Figure 4: Expression of GABAA receptor subunits in the hippocampus.
Figure 5: Modulation of δ subunit-containing GABAA receptors by neuroactive steroids.

References

  1. Mody, I., De Koninck, Y., Otis, T. S. & Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517–525 (1994).

    CAS  PubMed  Google Scholar 

  2. Edwards, F. A., Konnerth, A. & Sakmann, B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. (Lond.) 430, 213–249 (1990).

    CAS  Google Scholar 

  3. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    CAS  PubMed  Google Scholar 

  4. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19, 2960–2973 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Overstreet, L. S., Westbrook, G. L. & Jones, M. V. in Transmembrane Transporters (ed. Quick, M. W.) 259–275 (Wiley–Liss Inc., Hoboken, New Jersey, 2002).

    Google Scholar 

  6. Mozrzymas, J. W., Zarmowska, E. D., Pytel, M. & Mercik, K. Modulation of GABAA receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J. Neurosci. 23, 7981–7992 (2003). The authors investigated the properties of mIPSCs at various pH values, and, from responses to exogenous GABA, separately determined that protons affect the binding and desensitization of GABA A receptors. By modelling mIPSCs as responses to exponentially decaying GABA concentration transients, they were able to reproduce the pH effects by assuming a concentration transient of GABA in the synaptic cleft that peaked at 3 mM, with a clearance time constant of 100 μs.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mozrzymas, J. W. Dynamism of GABAA receptor activation shapes the 'personality' of inhibitory synapses. Neuropharmacology 47, 945–960 (2004).

    CAS  PubMed  Google Scholar 

  8. Baumann, S. W., Baur, R. & Sigel, E. Individual properties of the two functional agonist sites in GABAA receptors. J. Neurosci. 23, 11158–11166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, M. V., Sahara, Y., Dzubay, J. A. & Westbrook, G. L. Defining affinity with the GABAA receptor. J. Neurosci. 18, 8590–8604 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Frerking, M. & Wilson, M. Saturation of postsynaptic receptors at central synapses? Curr. Opin. Neurobiol. 6, 395–403 (1996).

    CAS  PubMed  Google Scholar 

  11. Perrais, D. & Ropert, N. Effect of zolpidem on miniature IPSCs and occupancy of postsynaptic GABAA receptors in central synapses. J. Neurosci. 19, 578–588 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hajos, N., Nusser, Z., Rancz, E. A., Freund, T. F. & Mody, I. Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy. Eur. J. Neurosci. 12, 810–818 (2000).

    CAS  PubMed  Google Scholar 

  13. Weiss, D. S. & Magleby, K. L. Gating scheme for single GABA-activated Cl channels determined from stability plots, dwell-time distributions, and adjacent-interval durations. J. Neurosci. 9, 1314–1324 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Twyman, R. E., Rogers, C. J. & Macdonald, R. L. Intraburst kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J. Physiol. (Lond.) 423, 193–220 (1990).

    CAS  Google Scholar 

  15. Jones, M. V. & Westbrook, G. L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191 (1995). Using rapid GABA application to receptors in excised membrane patches, the authors revealed how desensitization could shape IPSCs. They showed that entry to desensitized states held the channel in bound conformations that allowed channel re-opening after GABA removal, thereby prolonging the response to a brief synaptic GABA concentration transient.

    CAS  PubMed  Google Scholar 

  16. Jayaraman, V., Thiran, S. & Hess, G. P. How fast does the γ-aminobutyric acid receptor channel open? Kinetic investigations in the microsecond time region using a laser-pulse photolysis technique. Biochemistry 38, 11372–11378 (1999).

    CAS  PubMed  Google Scholar 

  17. Haas, K. F. & Macdonald, R. L. GABAA receptor subunit γ2 and δ subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J. Physiol. (Lond.) 514, 27–45 (1999). A detailed biophysical analysis of responses from recombinant α 1 β 3 γ 2 and α 1 β 3 δ receptors, which shows that the δ subunit confers unique kinetic properties on GABA A receptors.

    CAS  Google Scholar 

  18. Burkat, P. M., Yang, J. & Gingrich, K. J. Dominant gating governing transient GABAA receptor activity: a first latency and Po analysis. J. Neurosci. 21, 7026–7036 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bier, M., Kits, K. S. & Borst, J. G. Relation between rise times and amplitudes of GABAergic postsynaptic currents. J. Neurophysiol. 75, 1008–1012 (1996).

    CAS  PubMed  Google Scholar 

  20. Maconochie, D. J., Zempel, J. M. & Steinbach, J. H. How quickly can GABAA receptors open? Neuron 12, 61–71 (1994).

    CAS  PubMed  Google Scholar 

  21. McClellan, A. M. & Twyman, R. E. Receptor system response kinetics reveal functional subtypes of native murine and recombinant human GABAA receptors. J. Physiol. (Lond.) 515, 711–727 (1999).

    CAS  Google Scholar 

  22. Chang, Y. & Weiss, D. S. Channel opening locks agonist onto the GABAC receptor. Nature Neurosci. 2, 219–225 (1999).

    CAS  PubMed  Google Scholar 

  23. Bianchi, M. T. & Macdonald, R. L. Agonist trapping by GABAA receptor channels. J. Neurosci. 21, 9083–9091 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Okada, M., Onodera, K., Van Renterghem, C., Sieghart, W. & Takahashi, T. Functional correlation of GABAA receptor α subunits expression with the properties of IPSCs in the developing thalamus. J. Neurosci. 20, 2202–2208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vicini, S. et al. GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J. Neurosci. 21, 3009–3016 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nusser, Z., Sieghart, W. & Mody, I. Differential regulation of synaptic GABAA receptors by cAMP-dependent protein kinase in mouse cerebellar and olfactory bulb neurones. J. Physiol. (Lond.) 521, 421–435 (1999).

    CAS  Google Scholar 

  27. Bacci, A., Rudolph, U., Huguenard, J. R. & Prince, D. A. Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J. Neurosci. 23, 9664–9674 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramadan, E. et al. GABAA receptor β3 subunit deletion decreases α2/3 subunits and IPSC duration. J. Neurophysiol. 89, 128–134 (2003).

    CAS  PubMed  Google Scholar 

  29. Barbour, B. & Hausser, M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 20, 377–384 (1997).

    CAS  PubMed  Google Scholar 

  30. Kullmann, D. M. Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog. Brain Res. 125, 339–351 (2000).

    CAS  PubMed  Google Scholar 

  31. Telgkamp, P., Padgett, D. E., Ledoux, V. A., Woolley, C. S. & Raman, I. M. Maintenance of high-frequency transmission at Purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron 41, 113–126 (2004). An elegant study that combines electrophysiology, electron microscopy reconstructions of Purkinje cell synaptic connections and simulations to show how multiple active zones in one bouton enable spillover-mediated transmission, which allows high-frequency inhibition at corticonuclear synapses.

    CAS  PubMed  Google Scholar 

  32. Mody, I. Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem. Res. 26, 907–913 (2001).

    CAS  PubMed  Google Scholar 

  33. Kullmann, D. M. et al. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog. Biophys. Mol. Biol. 87, 33–46 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Valeyev, A. Y., Cruciani, R. A., Lange, G. D., Smallwood, V. S. & Barker, J. L. Cl channels are randomly activated by continuous GABA secretion in cultured embryonic rat hippocampal neurons. Neurosci. Lett. 155, 199–203 (1993).

    CAS  PubMed  Google Scholar 

  35. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    CAS  PubMed  Google Scholar 

  36. Owens, D. F., Liu, X. & Kriegstein, A. R. Changing properties of GABAA receptor-mediated signaling during early neocortical development. J. Neurophysiol. 82, 570–583 (1999).

    CAS  PubMed  Google Scholar 

  37. Demarque, M. et al. Paracrine intercellular communication by a Ca2+- and SNARE- independent release of GABA and glutamate prior to synapse formation. Neuron 36, 1051–1061 (2002).

    CAS  PubMed  Google Scholar 

  38. Otis, T. S., Staley, K. J. & Mody, I. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 545, 142–150 (1991).

    CAS  PubMed  Google Scholar 

  39. Salin, P. A. & Prince, D. A. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J. Neurophysiol. 75, 1573–1588 (1996).

    CAS  PubMed  Google Scholar 

  40. Hausser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    CAS  PubMed  Google Scholar 

  41. Kaneda, M., Farrant, M. & Cull-Candy, S. G. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J. Physiol. (Lond.) 485, 419–435 (1995).

    CAS  Google Scholar 

  42. Brickley, S., Cull-Candy, S. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. (Lond.) 497, 753–759 (1996). The authors investigated the postnatal development and inhibitory effects of the tonic GABA A receptor-mediated conductance in cerebellar granule cells. This was first identified in reference 41 and was shown to be distinct from the superimposition of phasic synaptic events. The conductance was found to increase with age, in line with known changes in subunit expression, and to reduce action potential generation in response to current injection.

    CAS  Google Scholar 

  43. Tia, S., Wang, J. F., Kotchabhakdi, N. & Vicini, S. Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABAA receptor α6 subunit. J. Neurosci. 16, 3630–3640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wall, M. J. & Usowicz, M. M. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur. J. Neurosci. 9, 533–548 (1997).

    CAS  PubMed  Google Scholar 

  45. Nusser, Z. & Mody, I. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J. Neurophysiol. 87, 2624–2628 (2002).

    CAS  PubMed  Google Scholar 

  46. Porcello, D. M., Huntsman, M. M., Mihalek, R. M., Homanics, G. E. & Huguenard, J. R. Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking δ subunit. J. Neurophysiol. 89, 1378–1386 (2003).

    CAS  PubMed  Google Scholar 

  47. Yamada, J., Yamamoto, S., Ueno, S., Furukawa, T. & Fukuda, A. GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. FENS Forum Abstr. 2, A083.027 (2004).

    Google Scholar 

  48. Bai, D. L. et al. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by γ-aminobutyric acidA receptors in hippocampal neurons. Mol. Pharmacol. 59, 814–824 (2001).

    CAS  PubMed  Google Scholar 

  49. Semyanov, A., Walker, M. C. & Kullmann, D. M. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nature Neurosci. 6, 484–490 (2003). Showed that when GABA uptake is intact, guinea pig hippocampal interneurons, but not pyramidal cells, exhibit a tonic GABA A receptor-mediated conductance. Reducing the tonic conductance in interneurons with a low concentration of picrotoxin increased their excitability and the inhibitory input to pyramidal cells.

    CAS  PubMed  Google Scholar 

  50. Sigel, E., Baur, R., Malherbe, P. & Mohler, H. The rat β1-subunit of the GABAA receptor forms a picrotoxin-sensitive anion channel open in the absence of GABA. FEBS Lett. 257, 377–379 (1989).

    CAS  PubMed  Google Scholar 

  51. Maksay, G., Thompson, S. A. & Wafford, K. A. The pharmacology of spontaneously open α1β3ε GABAA receptor-ionophores. Neuropharmacology 44, 994–1002 (2003).

    CAS  PubMed  Google Scholar 

  52. Lindquist, C. E., Dalziel, J. E., Cromer, B. A. & Birnir, B. Penicillin blocks human α1β1 and α1β1γ2S GABAA channels that open spontaneously. Eur. J. Pharmacol. 496, 23–32 (2004).

    CAS  PubMed  Google Scholar 

  53. Birnir, B., Everitt, A. B., Lim, M. S. & Gage, P. W. Spontaneously opening GABAA channels in CA1 pyramidal neurones of rat hippocampus. J. Membr. Biol. 174, 21–29 (2000).

    CAS  PubMed  Google Scholar 

  54. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 (1993).

    CAS  PubMed  Google Scholar 

  55. Lerma, J., Herranz, A. S., Herreras, O., Abraira, V. & Martin del Rio, R. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 384, 145–155 (1986).

    CAS  PubMed  Google Scholar 

  56. Tossman, U., Jonsson, G. & Ungerstedt, U. Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol. Scand. 127, 533–545 (1986).

    CAS  PubMed  Google Scholar 

  57. Kennedy, R. T., Thompson, J. E. & Vickroy, T. W. In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J. Neurosci. Methods 114, 39–49 (2002).

    CAS  PubMed  Google Scholar 

  58. Xi, Z. X. et al. GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. J. Neurosci. 23, 3498–3505 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Vesicular release of GABA contributes to both phasic and tonic inhibition of granule cells in the cerebellum of mature mice. J. Physiol. 547.P, C30 (2003).

    Google Scholar 

  60. Carta, M., Mameli, M. & Valenzuela, C. F. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J. Neurosci. 24, 3746–3751 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rossi, D. J., Hamann, M. & Attwell, D. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J. Physiol. (Lond.) 548, 97–110 (2003).

    CAS  Google Scholar 

  62. Jensen, K., Chiu, C. S., Sokolova, I., Lester, H. A. & Mody, I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J. Neurophysiol. 90, 2690–2701 (2003).

    CAS  PubMed  Google Scholar 

  63. Buzsaki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995).

    CAS  PubMed  Google Scholar 

  64. Singer, W. The changing face of inhibition. Curr. Biol. 6, 395–397 (1996).

    CAS  PubMed  Google Scholar 

  65. Somogyi, P. P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005).

    CAS  Google Scholar 

  66. Freund, T. F. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).

    CAS  PubMed  Google Scholar 

  67. Whittington, M. A. & Traub, R. D. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676–682 (2003).

    CAS  PubMed  Google Scholar 

  68. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron diversity series: fast in, fast out — temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004).

    CAS  PubMed  Google Scholar 

  69. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995). Showed that a single hippocampal GABA-releasing basket cell can time the output and synchronize the activity of a large population of postsynaptic pyramidal cells. This study reveals that phasic inhibition does not necessarily have a purely inhibitory role in the CNS.

    CAS  PubMed  Google Scholar 

  70. Galarreta, M. & Hestrin, S. Electrical synapses between GABA-releasing interneurons. Nature Rev. Neurosci. 2, 425–433 (2001).

    CAS  Google Scholar 

  71. Wang, X. -J. & Buzsaki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Traub, R. D. et al. Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog. Neurobiol. 55, 563–575 (1998).

    CAS  PubMed  Google Scholar 

  73. Huntsman, M. M., Porcello, D. M., Homanics, G. E., DeLorey, T. M. & Huguenard, J. R. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283, 541–543 (1999).

    CAS  PubMed  Google Scholar 

  74. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Rev. Neurosci. 3, 884–895 (2002).

    CAS  Google Scholar 

  75. Miles, R., Toth, K., Gulyas, A. I., Hajos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    CAS  PubMed  Google Scholar 

  76. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    CAS  PubMed  Google Scholar 

  77. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001). Shows, in hippocampal pyramidal cells, how the disynaptic feed-forward inhibition that follows monosynaptic excitation substantially restricts the window in which temporal summation can occur. Regional differences in the strength of inhibition allow the dendrites to integrate input over a broad time window while enforcing precise coincidence detection at the soma.

    CAS  PubMed  Google Scholar 

  78. Gulledge, A. T. & Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).

    CAS  PubMed  Google Scholar 

  79. Williams, S. R. & Stuart, G. J. Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J. Neurosci. 23, 7358–7367 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  81. Hamann, M., Rossi, D. J. & Attwell, D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33, 625–633 (2002). Shows that in the adult cerebellar cortex, mossy fibre input to Purkinje cells is controlled by furosemide-sensitive GABA A receptors on granule cells, which are activated tonically both by ambient GABA and following spillover of synaptically released GABA.

    CAS  PubMed  Google Scholar 

  82. Chadderton, P., Margrie, T. W. & Hausser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004). The authors carried out the first in vivo patch-clamp recordings from cerebellar granule cells, and revealed the presence of a tonic GABA A receptor-mediated conductance in the intact brain.

    CAS  PubMed  Google Scholar 

  83. Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    CAS  PubMed  Google Scholar 

  84. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002). References 83 and 84 provide elegant demonstrations of how tonic inhibition, when combined with phasic excitation, can alter the way in which action potentials are generated in response to changing levels of excitatory input, effectively altering neuronal gain.

    CAS  PubMed  Google Scholar 

  85. Semyanov, A., Walker, M. C., Kullmann, D. M. & Silver, R. A. Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004).

    CAS  PubMed  Google Scholar 

  86. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969).

    CAS  Google Scholar 

  87. Tyrrell, T. & Willshaw, D. Cerebellar cortex: its simulation and the relevance of Marr's theory. Phil. Trans. R. Soc. Lond. B 336, 239–257 (1992).

    CAS  Google Scholar 

  88. Maex, R. & Schutter, E. D. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J. Neurophysiol. 80, 2521–2537 (1998).

    CAS  PubMed  Google Scholar 

  89. Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl Acad. Sci. USA 100, 14439–14444 (2003). Showed that, in granule cells of the dentate gyrus and cerebellum, the neurosteroid THDOC, at a low concentration that is known to occur in vivo , specifically enhanced the tonic inhibitory conductance that was mediated by extrasynaptic δ-subunit-containing GABA A receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Caraiscos, V. B. et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 101, 3662–3667 (2004). By recording from hippocampal slices previously incubated in the GABA transaminase blocker vigabatrin, the authors showed that the tonic GABA A receptor-mediated conductance in CA1 pyramidal neurons was reduced in cells from mice that lacked the α5 subunit of the GABA A receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Stell, B. M. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci. 22, RC223 (2002).

    PubMed  PubMed Central  Google Scholar 

  92. Wisden, W. et al. Ectopic expression of the GABAA receptor α6 subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic inhibition. Neuropharmacology 43, 530–549 (2002).

    CAS  PubMed  Google Scholar 

  93. Bieda, M. C. & MacIver, M. B. A major role for tonic GABAA conductances in anaesthetic supression of intrinsic neuronal excitability. J. Neurophysiol. (in the press).

  94. Richards, J. G., Schoch, P., Haring, P., Takacs, B. & Mohler, H. Resolving GABAA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. J. Neurosci. 7, 1866–1886 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Somogyi, P., Takagi, H., Richards, J. G. & Mohler, H. Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J. Neurosci. 9, 2197–2209 (1989). The first high-resolution demonstration of the presence of non-synaptic GABA A receptors on the surface of CNS neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Waldvogel, H. J. et al. GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience 39, 361–385 (1990).

    CAS  PubMed  Google Scholar 

  97. Soltesz, I. et al. Synaptic and nonsynaptic localization of benzodiazepine/GABAA receptor/Cl channel complex using monoclonal antibodies in the dorsal lateral geniculate nucleus of the cat. Eur. J. Neurosci. 2, 414–429 (1990).

    CAS  PubMed  Google Scholar 

  98. Nusser, Z., Roberts, J. D. B., Baude, A., Richards, J. G. & Somogyi, P. Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neurosci. 15, 2948–2960 (1995). Showed that in cerebellar granule cells, the total number of extrasynaptic GABA A receptors exceeds that in GABA-releasing synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998). A demonstration, using immunogold electron microscopy, of the exclusively extrasynaptic presence of the δ subunit in cerebellar granule cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Craig, A. M., Blackstone, C. D., Huganir, R. L. & Banker, G. Selective clustering of glutamate and γ-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl Acad. Sci. USA 91, 12373–12377 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Somogyi, P., Fritschy, J. M., Benke, D., Roberts, J. D. & Sieghart, W. The γ2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the α1 and β2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 35, 1425–1444 (1996).

    CAS  PubMed  Google Scholar 

  102. Fritschy, J. M., Johnson, D. K., Mohler, H. & Rudolph, U. Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett. 249, 99–102 (1998).

    CAS  PubMed  Google Scholar 

  103. Brunig, I., Scotti, E., Sidler, C. & Fritschy, J. M. Intact sorting, targeting, and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J. Comp. Neurol. 443, 43–55 (2002).

    CAS  PubMed  Google Scholar 

  104. Wei, W., Zhang, N., Peng, Z., Houser, C. R. & Mody, I. Perisynaptic localization of δ subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. 23, 10650–10661 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Barnard, E. A. et al. International union of pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313 (1998).

    CAS  PubMed  Google Scholar 

  106. Luscher, B. & Keller, C. A. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol. Ther. 102, 195–221 (2004).

    CAS  PubMed  Google Scholar 

  107. Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nature Rev. Neurosci. 2, 240–250 (2001).

    CAS  Google Scholar 

  108. Fritschy, J. M. & Brunig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 98, 299–323 (2003).

    CAS  PubMed  Google Scholar 

  109. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci. 1, 563–571 (1998). In this elegant study, the authors showed that cortical and hippocampal neurons from mice that lacked the γ2 subunit failed to accumulate GABA A receptors at developing synaptic sites. The loss of GABA A receptor clusters was accompanied by a loss of gephyrin and a loss of normal synaptic function.

    CAS  PubMed  Google Scholar 

  110. Schweizer, C. et al. The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol. Cell. Neurosci. 24, 442–450 (2003).

    CAS  PubMed  Google Scholar 

  111. Farrant, M. et al. Loss of IPSCs following selective ablation of the GABAA receptor γ2 subunit in cerebellar granule cells. Soc. Neurosci. Abstr. 170.3 (2004).

  112. Crestani, F. et al. Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc. Natl Acad. Sci. USA 99, 8980–8985 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Collinson, N. et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J. Neurosci. 22, 5572–5580 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    CAS  PubMed  Google Scholar 

  115. Mody, I. & Pearce, R. A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 27, 569–575 (2004).

    CAS  PubMed  Google Scholar 

  116. Brickley, S. G., Revilla, V., Cull-Candy, S. G., Wisden, W. & Farrant, M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409, 88–92 (2001). Deletion of the α6 subunit of the GABA A receptor abolished the GABA A receptor-mediated tonic conductance in cerebellar granule cells. Together with reference 89, this study showed that the conductance is mediated by α 6 βδ receptors. Although tonic GABA A receptor activation was lost, normal granule cell excitability was maintained by the upregulation of a voltage-independent potassium conductance.

    CAS  PubMed  Google Scholar 

  117. Peng, Z. et al. GABAA receptor changes in δ subunit-deficient mice: altered expression of α4 and γ2 subunits in the forebrain. J. Comp. Neurol. 446, 179–197 (2002).

    CAS  PubMed  Google Scholar 

  118. Colquhoun, D. Binding gating affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    CAS  PubMed  Google Scholar 

  119. Knoflach, F. et al. Pharmacological modulation of the diazepam-insensitive recombinant γ-aminobutyric acid A receptors α4β2γ2 and α6β2γ2. Mol. Pharmacol. 50, 1253–1261 (1996).

    CAS  PubMed  Google Scholar 

  120. Fisher, J. L. & Macdonald, R. L. Single channel properties of recombinant GABAA receptors containing γ2 or δ subtypes expressed with α1 and β3 subtypes in mouse L929 cells. J. Physiol. (Lond.) 505, 283–297 (1997).

    CAS  Google Scholar 

  121. Bohme, I., Rabe, H. & Luddens, H. Four amino acids in the α subunits determine the γ-aminobutyric acid sensitivities of GABAA receptor subtypes. J. Biol. Chem. 279, 35193–35200 (2004).

    PubMed  Google Scholar 

  122. Feng, H. J. & Macdonald, R. L. Multiple actions of propofol on αβγ and αβδ GABAA receptors. Mol. Pharmacol. 66, 1517–1524 (2004).

    CAS  PubMed  Google Scholar 

  123. Minier, F. & Sigel, E. Positioning of the α-subunit isoforms confers a functional signature to γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 101, 7769–7774 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Brown, N., Kerby, J., Bonnert, T. P., Whiting, P. J. & Wafford, K. A. Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors. Br. J. Pharmacol. 136, 965–974 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Verdoorn, T. A., Draguhn, A., Ymer, S., Seeburg, P. H. & Sakmann, B. Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4, 919–928 (1990).

    CAS  PubMed  Google Scholar 

  126. Puia, G. et al. Neurosteroids act on recombinant human GABAA receptors. Neuron 4, 759–765 (1990).

    CAS  PubMed  Google Scholar 

  127. Angelotti, T. P. & Macdonald, R. L. Assembly of GABAA receptor subunits: α1β1 and α1β1γ2S subunits produce unique ion channels with dissimilar single-channel properties. J. Neurosci. 13, 1429–1440 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Akk, G., Bracamontes, J. & Steinbach, J. H. Activation of GABAA receptors containing the α4 subunit by GABA and pentobarbital. J. Physiol. 556, 387–399 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Adkins, C. E. et al. α4β3δ GABAA receptors characterized by fluorescence resonance energy transfer-derived measurements of membrane potential. J. Biol. Chem. 276, 38934–38939 (2001).

    CAS  PubMed  Google Scholar 

  130. Bianchi, M. T. & Macdonald, R. L. Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns. J. Neurosci. 23, 10934–10943 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gingrich, K. J., Roberts, W. A. & Kass, R. S. Dependence of the GABAA receptor gating kinetics on the α-subunit isoform: implications for structure–function relations and synaptic transmission. J. Physiol. 489, 529–543 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lavoie, A. M., Tingey, J. J., Harrison, N. L., Pritchett, D. B. & Twyman, R. E. Activation and deactivation rates of recombinant GABAA receptor channels are dependent on α-subunit isoform. Biophys. J. 73, 2518–2526 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Boileau, A. J., Li, T., Benkwitz, C., Czajkowski, C. & Pearce, R. A. Effects of γ2S subunit incorporation on GABAA receptor macroscopic kinetics. Neuropharmacology 44, 1003–1012 (2003).

    CAS  PubMed  Google Scholar 

  134. Benkwitz, C., Banks, M. I. & Pearce, R. A. Influence of GABAA receptor γ2 splice variants on receptor kinetics and isoflurane modulation. Anesthesiology 101, 924–936 (2004).

    CAS  PubMed  Google Scholar 

  135. Bianchi, M. T., Haas, K. F. & Macdonald, R. L. α1 and α6 subunits specify distinct desensitization, deactivation and neurosteroid modulation of GABAA receptors containing the δ subunit. Neuropharmacology 43, 492–502 (2002).

    CAS  PubMed  Google Scholar 

  136. Jones, M. V. & Westbrook, G. L. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19, 96–101 (1996).

    CAS  PubMed  Google Scholar 

  137. Bianchi, M. T. & Macdonald, R. L. Slow phases of GABAA receptor desensitization: structural determinants and possible relevance for synaptic function. J. Physiol. (Lond.) 544, 3–18 (2002).

    CAS  Google Scholar 

  138. Mellor, J. R. & Randall, A. D. Synaptically released neurotransmitter fails to desensitize postsynaptic GABAA receptors in cerebellar cultures. J. Neurophysiol. 85, 1847–1857 (2001).

    CAS  PubMed  Google Scholar 

  139. Behrends, J. C., Lambert, J. D. C. & Jensen, K. Repetitive activation of postsynaptic GABAA receptors by rapid, focal agonist application onto intact rat striatal neurones in vitro. Pflugers Arch. 443, 707–712 (2002).

    CAS  PubMed  Google Scholar 

  140. Overstreet, L. S., Jones, M. V. & Westbrook, G. L. Slow desensitization regulates the availability of synaptic GABAA receptors. J. Neurosci. 20, 7914–7921 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mozrzymas, J. W., Barberis, A., Mercik, K. & Zarnowska, E. D. Binding sites, singly bound states, and conformation coupling shape GABA-evoked currents. J. Neurophysiol. 89, 871–883 (2003).

    CAS  PubMed  Google Scholar 

  142. Saxena, N. & Macdonald, R. Properties of putative cerebellar γ-aminobutyric acid A receptor isoforms. Mol. Pharmacol. 49, 567–579 (1996).

    CAS  PubMed  Google Scholar 

  143. Tia, S., Wang, J. F., Kotchabhakdi, N. & Vicini, S. Distinct deactivation and desensitization kinetics of recombinant GABAA receptors. Neuropharmacology 35, 1375–1382 (1996).

    CAS  PubMed  Google Scholar 

  144. Bianchi, M. T. & Macdonald, R. L. Mutation of the 9′ leucine in the GABAA receptor γ2L subunit produces an apparent decrease in desensitization by stabilizing open states without altering desensitized states. Neuropharmacology 41, 737–744 (2001).

    CAS  PubMed  Google Scholar 

  145. Petrini, E. M., Marchionni, I., Zacchi, P., Sieghart, W. & Cherubini, E. Clustering of extrasynaptic GABAA receptors modulates tonic inhibition in cultured hippocampal neurons. J. Biol. Chem. 279, 45833–45843 (2004).

    CAS  PubMed  Google Scholar 

  146. Frerking, M., Petersen, C. C. & Nicoll, R. A. Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. Proc. Natl Acad. Sci. USA 96, 12917–12922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kullmann, D. M. & Semyanov, A. Glutamatergic modulation of GABAergic signaling among hippocampal interneurons: novel mechanisms regulating hippocampal excitability. Epilepsia 43, 174–178 (2002).

    CAS  PubMed  Google Scholar 

  148. Leao, R. M., Mellor, J. R. & Randall, A. D. Tonic benzodiazepine-sensitive GABAergic inhibition in cultured rodent cerebellar granule cells. Neuropharmacology 39, 990–1003 (2000).

    CAS  PubMed  Google Scholar 

  149. Richerson, G. B. & Wu, Y. M. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 90, 1363–1374 (2003).

    CAS  PubMed  Google Scholar 

  150. Wu, Y., Wang, W. & Richerson, G. B. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J. Neurophysiol. 89, 2021–2034 (2003).

    CAS  PubMed  Google Scholar 

  151. Overstreet, L. S. & Westbrook, G. L. Paradoxical reduction of synaptic inhibition by vigabatrin. J. Neurophysiol. 86, 596–603 (2001).

    CAS  PubMed  Google Scholar 

  152. Allen, N. J., Rossi, D. J. & Attwell, D. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J. Neurosci. 24, 3837–3849 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Corey, J. L., Davidson, N., Lester, H. A., Brecha, N. & Quick, M. W. Protein kinase C modulates the activity of a cloned γ-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter. J. Biol. Chem. 269, 14759–14767 (1994).

    CAS  PubMed  Google Scholar 

  154. Quick, M. W., Hu, J., Wang, D. & Zhang, H. Y. Regulation of a γ-aminobutyric acid transporter by reciprocal tyrosine and serine phosphorylation. J. Biol. Chem. 279, 15961–15967 (2004).

    CAS  PubMed  Google Scholar 

  155. Hansra, N., Arya, S. & Quick, M. W. Intracellular domains of a rat brain GABA transporter that govern transport. J. Neurosci. 24, 4082–4087 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kittler, J. T. & Moss, S. J. Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr. Opin. Neurobiol. 13, 341–347 (2003).

    CAS  PubMed  Google Scholar 

  157. Keller, C. A. et al. The γ2 subunit of GABAA receptors is a substrate for palmitoylation by GODZ. J. Neurosci. 24, 5881–5891 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Jones, M. V. & Westbrook, G. L. Shaping of IPSCs by endogenous calcineurin activity. J. Neurosci. 17, 7626–7633 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Hinkle, D. J. & Macdonald, R. L. β subunit phosphorylation selectively increases fast desensitization and prolongs deactivation of α1β1γ2L and α1β3γ2L GABAA receptor currents. J. Neurosci. 23, 11698–11710 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang, Q. et al. Control of synaptic strength, a novel function of Akt. Neuron 38, 915–928 (2003).

    CAS  PubMed  Google Scholar 

  161. Rathenberg, J., Kittler, J. T. & Moss, S. J. Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell. Neurosci. 26, 251–257 (2004).

    CAS  PubMed  Google Scholar 

  162. Triller, A. & Choquet, D. Synaptic structure and diffusion dynamics of synaptic receptors. Biol. Cell 95, 465–476 (2003).

    CAS  PubMed  Google Scholar 

  163. Chen, L., Wang, H., Vicini, S. & Olsen, R. W. The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc. Natl Acad. Sci. USA 97, 11557–11562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Everitt, A. B. et al. Conductance of recombinant GABAA channels is increased in cells co-expressing GABAA receptor-associated protein. J. Biol. Chem. 279, 21701–21706 (2004).

    CAS  PubMed  Google Scholar 

  165. Petrini, E. M., Zacchi, P., Barberis, A., Mozrzymas, J. W. & Cherubini, E. Declusterization of GABAA receptors affects the kinetic properties of GABAergic currents in cultured hippocampal neurons. J. Biol. Chem. 278, 16271–16279 (2003).

    CAS  PubMed  Google Scholar 

  166. Peng, Z., Huang, C. S., Stell, B. M., Mody, I. & Houser, C. R. Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J. Neurosci. 24, 8629–8639 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Follesa, P., Biggio, F., Caria, S., Gorini, G. & Biggio, G. Modulation of GABAA receptor gene expression by allopregnanolone and ethanol. Eur. J. Pharmacol. 500, 413–425 (2004).

    CAS  PubMed  Google Scholar 

  168. Yeung, J. Y. T. et al. Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol. Pharmacol. 63, 2–8 (2003).

    CAS  PubMed  Google Scholar 

  169. Korpi, E. R., Kuner, T., Seeburg, P. H. & Luddens, H. Selective antagonist for the cerebellar granule cell-specific γ-aminobutyric acid type A receptor. Mol. Pharmacol. 47, 283–289 (1995).

    CAS  PubMed  Google Scholar 

  170. Wall, M. J. Furosemide reveals heterogeneous GABAA receptor expression at adult rat Golgi cell to granule cell synapses. Neuropharmacology 43, 737–749 (2002).

    CAS  PubMed  Google Scholar 

  171. Hevers, W. & Luddens, H. Pharmacological heterogeneity of γ-aminobutyric acid receptors during development suggests distinct classes of rat cerebellar granule cells in situ. Neuropharmacology 42, 34–47 (2002).

    CAS  PubMed  Google Scholar 

  172. Belelli, D., Casula, A., Ling, A. & Lambert, J. J. The influence of subunit composition on the interaction of neurosteroids with GABAA receptors. Neuropharmacology 43, 651–661 (2002).

    CAS  PubMed  Google Scholar 

  173. Wohlfarth, K. M., Bianchi, M. T. & Macdonald, R. L. Enhanced neurosteroid potentiation of ternary GABAA receptors containing the δ subunit. J. Neurosci. 22, 1541–1549 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sundstrom-Poromaa, I. et al. Hormonally regulated α4β2δ GABAA receptors are a target for alcohol. Nature Neurosci. 5, 721–722 (2002).

    CAS  PubMed  Google Scholar 

  175. Wallner, M., Hanchar, H. J. & Olsen, R. W. Ethanol enhances α4β3δ and α6β3δ γ-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc. Natl Acad. Sci. USA 100, 15218–15223 (2003). References 174 and 175 provide an elegant demonstration that concentrations of ethanol that can be reached with moderate, social alcohol consumption enhance responses from δ but not γ2 subunit-containing GABA A receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Wei, W., Faria, L. C. & Mody, I. Low ethanol concentrations selectively augment the tonic inhibition mediated by δ subunit-containing GABAA receptors in hippocampal neurons. J. Neurosci. 24, 8379–8382 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hanchar, H. J., Dodson, P. D., Olsen, R. W., Otis, T. S. & Wallner, M. Alcohol induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nature Neurosci. (in the press). Shows that alcohol impairs motor coordination by enhancing tonic inhibition, which is mediated by extrasynaptic α 6 β 3 δ GABA A receptors in cerebellar granule cells. Moreover, in ANT rats, a naturally occurring single nucleotide polymorphism (R100Q) in the α6 subunit results in a GABA A receptor that is significantly more sensitive to the potentiating effects of alcohol.

  178. Caraiscos, V. B. et al. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J. Neurosci. 24, 8454–8458 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.) 385, 243–286 (1987).

    CAS  Google Scholar 

  180. Kaila, K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489–537 (1994).

    CAS  PubMed  Google Scholar 

  181. Payne, J. A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003).

    CAS  PubMed  Google Scholar 

  182. Chavas, J., Forero, M. E., Collin, T., Llano, I. & Marty, A. Osmotic tension as a possible link between GABAA receptor activation and intracellular calcium elevation. Neuron 44, 701–713 (2004).

    CAS  PubMed  Google Scholar 

  183. Llinas, R. & Muhlethaler, M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem–cerebellar preparation. J. Physiol. (Lond.) 404, 241–258 (1988).

    CAS  Google Scholar 

  184. Rivera, C., Voipio, J. & Kaila, K. Two developmental switches in GABAergic signalling: the K+–Cl cotransporter KCC2, and carbonic anhydrase CAVII. J. Physiol. (Lond.) 562, 27–36 (2005).

    CAS  Google Scholar 

  185. Chavas, J. & Marty, A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J. Neurosci. 23, 2019–2031 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Stein, V. & Nicoll, R. A. GABA generates excitement. Neuron 37, 375–378 (2003).

    CAS  PubMed  Google Scholar 

  187. Gao, X. B., Chen, G. & van den Pol, A. N. GABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons. J. Neurophysiol. 79, 716–726 (1998).

    CAS  PubMed  Google Scholar 

  188. Staley, K. J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J. Neurophysiol. 68, 197–212 (1992).

    CAS  PubMed  Google Scholar 

  189. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002).

    CAS  Google Scholar 

  190. Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? Nature Rev. Neurosci. 3, 715–727 (2002).

    CAS  Google Scholar 

  191. Nguyen, L. et al. Autocrine/paracrine activation of the GABAA receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J. Neurosci. 23, 3278–3294 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lester, H. A., Dibas, M. I., Dahan, D. S., Leite, J. F. & Dougherty, D. A. Cys-loop receptors: new twists and turns. Trends Neurosci. 27, 329–336 (2004).

    CAS  PubMed  Google Scholar 

  193. Simon, J., Wakimoto, H., Fujita, N., Lalande, M. & Barnard, E. A. Analysis of the set of GABAA receptor genes in the human genome. J. Biol. Chem. 279, 41422–41435 (2004).

    CAS  PubMed  Google Scholar 

  194. Wisden, W., Laurie, D. J., Monyer, H. & Seeburg, P. H. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Fritschy, J. -M. & Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).

    CAS  PubMed  Google Scholar 

  196. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W. & Sperk, G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815–850 (2000).

    CAS  PubMed  Google Scholar 

  197. Kittler, J. T., McAinsh, K. & Moss, S. J. Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol. Neurobiol. 26, 251–268 (2002).

    CAS  PubMed  Google Scholar 

  198. Sieghart, W. & Sperk, G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2, 795–816 (2002).

    CAS  PubMed  Google Scholar 

  199. McKernan, R. M. & Whiting, P. J. Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 19, 139–143 (1996).

    CAS  PubMed  Google Scholar 

  200. Whiting, P. J. GABAA receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov. Today 8, 445–450 (2003).

    CAS  PubMed  Google Scholar 

  201. Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Farrar, S. J., Whiting, P. J., Bonnert, T. P. & McKernan, R. M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100–10104 (1999).

    CAS  PubMed  Google Scholar 

  203. Baumann, S. W., Baur, R. & Sigel, E. Forced subunit assembly in α1β2γ2 GABAA receptors. Insight into the absolute arrangement. J. Biol. Chem. 277, 46020–46025 (2002).

    CAS  PubMed  Google Scholar 

  204. Neelands, T. R., Fisher, J. L., Bianchi, M. & Macdonald, R. L. Spontaneous and γ-aminobutyric acid (GABA)-activated GABAA receptor channels formed by ε-subunit-containing isoforms. Mol. Pharmacol. 55, 168–178 (1999).

    CAS  PubMed  Google Scholar 

  205. Neelands, T. R. & Macdonald, R. L. Incorporation of the π subunit into functional γ-aminobutyric acid A receptors. Mol. Pharmacol. 56, 598–610 (1999).

    CAS  PubMed  Google Scholar 

  206. Bonnert, T. P. et al. θ, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl Acad. Sci. USA 96, 9891–9896 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Bormann, J. The 'ABC' of GABA receptors. Trends Pharmacol. Sci. 21, 16–19 (2000).

    CAS  PubMed  Google Scholar 

  208. Johnston, G. A. Medicinal chemistry and molecular pharmacology of GABA(C) receptors. Curr. Top. Med. Chem. 2, 903–913 (2002).

    CAS  PubMed  Google Scholar 

  209. Qian, H. & Ripps, H. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA ρ- and γ2-subunits. Proc. R. Soc. Lond. B 266, 2419–2425 (1999).

    CAS  Google Scholar 

  210. Milligan, C. J., Buckley, N. J., Garret, M., Deuchars, J. & Deuchars, S. A. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J. Neurosci. 24, 7241–7250 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Hevers, W. & Luddens, H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol. 18, 35–86 (1998).

    CAS  PubMed  Google Scholar 

  212. Compagnone, N. A. & Mellon, S. H. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol. 21, 1–56 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Smart (University College London) for comments on the manuscript, M. Wallner (University of California, Los Angeles) and E. Petrini (Trieste) for sharing data prior to publication, and S. Brickley (Imperial College London) for many helpful discussions during a long collaberation with M.F. M.F.'s research is supported by the Wellcome Trust. Z.N. is the recipient of a Wellcome Trust International Senior Research Fellowship, an International Scholarship from Howard Hughes Medical Institute and a Postdoctoral Fellowship from the Boehringer Ingelheim Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Farrant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

GABAA receptor subunit α1–α6

GABAA receptor subunit β1–β3

GABAA receptor subunit γ1–γ3

GABAA receptor subunit δ

GABARAP

gephyrin

GODZ

KCC2

NKCC1

FURTHER INFORMATION

Farrant's homepage

Nusser's homepage

Glossary

ALTERNATIVE SPLICING

During splicing, introns are excised from RNA after transcription and the cut ends are rejoined to form a continuous message. Alternative splicing allows the production of different messages from the same DNA molecule.

PARACRINE SIGNALLING

A signalling process that involves the secretion from a cell of molecules that act on other cells expressing appropriate receptors in the immediate neighbourhood, rather than acting on the same cell (autocrine signalling) or on remote cells (endocrine signalling).

GLOMERULUS

Axon terminals end in various configurations within the neuropil. The most common is en passant or de passage, in which axons make simple synapses as they pass dendrites or cell bodies. By contrast, some axons end in — or produce strings of — enlargements that are often packed with synaptic vesicles. These glomerular-type endings might synapse with large numbers of dendrites. In the cerebellum, each large excitatory mossy fibre terminal contacts dendrites from many granule cells and, together with inhibitory Golgi cell axon terminals, forms a glomerular structure that is wrapped with glia.

THETA FREQUENCY NETWORK OSCILLATION

Rhythmic neural activity with a frequency of 4–8 Hz.

GAMMA FREQUENCY NETWORK OSCILLATIONS

Rhythmic neural activity with a frequency of 25–70 Hz.

COINCIDENCE DETECTION

A situation in which two different subthreshold excitatory inputs are sufficiently closely timed that they summate to trigger the generation of an action potential.

TETRODOTOXIN

A potent marine neurotoxin that blocks voltage-gated sodium channels. Tetrodotoxin was originally isolated from the tetraodon pufferfish.

PALMITOYLATION

The covalent attachment of a palmitate (16-carbon, saturated fatty acid) to a cysteine residue through a thioester bond.

ALLOSTERIC

A term originally used to describe enzymes that have two or more receptor sites, one of which (the active site) binds the principal substrate, whereas the other(s) bind(s) effector molecules that can influence the enzyme's biological activity. More generally, it is used to describe the indirect coupling of distinct sites within a protein, mediated by conformational changes.

NOOTROPIC

Refers to agents that enhance memory or other cognitive functions.

ALCOHOL NON-TOLERANT RATS

(ANT rats). A rat line that has been selectively bred to be highly sensitive to motor impairment after ethanol intake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrant, M., Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci 6, 215–229 (2005). https://doi.org/10.1038/nrn1625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing