Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging

Key Points

  • Spontaneous blood oxygen level dependent (BOLD) fluctuations are not random noise, but are specifically correlated between functionally related brain regions and relate well to known anatomical systems.

  • Spontaneous BOLD fluctuations due to non-neuronal factors such as cardiac or respiratory activity can be isolated and are not responsible for the observed correlation patterns.

  • Spontaneous BOLD fluctuations are correlated with fluctuations in the power of high-frequency neuronal activity.

  • Spontaneous BOLD correlation patterns are largely consistent across different resting states, including sleep and anaesthesia, suggesting that they are an intrinsic property of the brain as opposed to being activity evoked by unconstrained mental activity.

  • Inter-subject variability in these correlation patterns relates to inter-subject variability in activation patterns and task performance.

  • Spontaneous BOLD fluctuations do not disappear during task paradigms but continue throughout, contributing to inter-trial variability in measured BOLD responses and behaviour.

Abstract

The majority of functional neuroscience studies have focused on the brain's response to a task or stimulus. However, the brain is very active even in the absence of explicit input or output. In this Article we review recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity. Although several challenges remain, these studies have provided insight into the intrinsic functional architecture of the brain, variability in behaviour and potential physiological correlates of neurological and psychiatric disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Traditional fMRI analysis and BOLD noise.
Figure 2: Generation of resting-state correlation maps.
Figure 3: Intrinsically defined anticorrelated networks in the human brain.
Figure 4: Coherent spontaneous fluctuations account for variability in event-related BOLD responses.
Figure 5: Spontaneous BOLD activity in the anaesthetized macaque monkey.

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (London) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Posner, M. I. & Raichle, M. E. Images of Mind (W. H. Freeman & Company, New York, 1994).

    Google Scholar 

  3. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004). An excellent introduction to the role of oscillations over a wide frequency range in supporting cortical network structure.

    Article  CAS  PubMed  Google Scholar 

  4. Varella, F., Lachaux, J.-P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  Google Scholar 

  5. Shulman, R. G., Rothman, D. L., Behar, K. L. & Hyder, F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Attwell, D. & Laughlin, S. B. An energy budget for signalling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ames, A. I. CNS energy metabolism as related to function. Brain Res. Rev. 34, 42–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Raichle, M. E. & Mintun, M. A. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–76 (2006). A comprehensive review of brain circulation and metabolism, its relationship to neurophysiology and functional brain imaging signals.

    Article  CAS  PubMed  Google Scholar 

  10. Cordes, D. et al. Mapping functionally related regions of brain with functional connectivity MR imaging. Am. J. Neuroradiol. 21, 1636–1644 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lowe, M. J., Mock, B. J. & Sorenson, J. A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7, 119–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Cordes, D. et al. Frequencies contributing to functional connectivity in the cerebral cortex in 'resting-state' data. Am. J. Neuroradiol. 22, 1326–1333 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiong, J., Parsons, L. M., Gao, J. H. & Fox, P. T. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum. Brain Mapp. 8, 151–156 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fox, M. D., Snyder, A. Z., Zacks, J. M. & Raichle, M. E. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neurosci. 9, 23–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. De Luca, M., Smith, S. M., De Stefano, N., Federico, A. & Matthews, P. M. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp. Brain Res. 167, 587–594 (2005).

    Article  PubMed  Google Scholar 

  16. Zarahn, E., Aguirre, G. K. & D'Esposito, M. Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5, 179–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wise, R. J. S., Ide, K., Poulin, M. J. & Tracey, I. Resting state fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21, 1652–1664 (2004).

    Article  PubMed  Google Scholar 

  18. Birn, R. M., Diamond, J. B., Smith, M. A. & Bandettini, P. A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31, 1536–1548 (2006).

    Article  PubMed  Google Scholar 

  19. Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W. & Nichols, T. E. Non-white noise in fMRI: does modelling have an impact? Neuroimage 29, 54–66 (2006).

    Article  PubMed  Google Scholar 

  20. Glover, G. H., Li, T. Q. & Ress, D. Image-based method for retrospective correction of physiological motion artifacts in fMRI: RETROICOR. Magn. Res. Med. 44, 162–167 (2000).

    Article  CAS  Google Scholar 

  21. Biswal, B., Yetkin, F., Haughton, V. & Hyde, J. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Res. Med. 34, 537–541 (1995). The first paper to note the presence of spontaneous, spatially coherent activity in the fMRI BOLD signal.

    Article  CAS  Google Scholar 

  22. De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M. & Smith, S. M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359–1367 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Deshpande, G., LaConte, S., Peltier, S. & Hu, X. Tissue specificity of nonlinear dynamics in baseline fMRI. Magn. Res. Med. 55, 626–632 (2006).

    Article  Google Scholar 

  24. Rombouts, S. A., Stam, C. J., Kuijer, J. P., Scheltens, P. & Barkhof, F. Identifying confounds to increase specificity during a 'no task condition'. Evidence for hippocampal connectivity using fMRI. Neuroimage 20, 1236–1245 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bartels, A. & Zeki, S. The chronoarchitecture of the human brain — natural viewing conditions reveal a time-based anatomy of the brain. Neuroimage 22, 419–433 (2004).

    Article  PubMed  Google Scholar 

  26. Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans R. Soc.Lond. Biol Sci. 360, 1001–1013 (2005).

    Article  Google Scholar 

  27. Kiviniemi, V., Kantola, J. H., Jauhiainen, J., Hyvarinen, A. & Tervonen, O. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19, 253–260 (2003).

    Article  PubMed  Google Scholar 

  28. Macey, P. M., Macey, K. E., Kumar, R. & Harper, R. M. A method for the removal of global effects from fMRI time series. Neuroimage 22, 360–366 (2004).

    Article  PubMed  Google Scholar 

  29. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anti-correlated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laufs, H. et al. Electroencephalographic signatures of attentional and cogntive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl Acad. Sci. USA 100, 11053–11058 (2003). A simultaneous BOLD/EEG study relating changes in the power of different EEG frequency bands to spontaneous BOLD fluctuations in distinct systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal mnemonic network. J. Neurophysiol. 96, 3517–3531 (2006).

    Article  PubMed  Google Scholar 

  34. Hampson, M., Peterson, B. S., Skudlarski, P., Gatenby, J. C. & Gore, J. C. Detection of functional connectivity using temporal correlations in MR images. Hum. Brain Mapp. 15, 247–262 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vincent, J. L. et al. Intrinsic functional architecture in the anesthetized monkey brain. Nature 447, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Cordes, D., Haughton, V. M., Carew, J. D., Arfanakis, K. & Maravilla, K. Hierachical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging 20, 305–317 (2002).

    Article  PubMed  Google Scholar 

  38. Salvador, R. et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005).

    PubMed  Google Scholar 

  39. Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartels, A. & Zeki, S. The chronoarchitecture of the cerebral cortex. Philos. Trans R. Soc. Lond. Biol Sci. 360, 733–750 (2005).

    Article  Google Scholar 

  42. Van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H. & Linden, D. E. J. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum. Brain Mapp. 22, 165–178 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kiviniemi, V., Kantola, J. H., Jauhiainen, J. & Tervonen, O. Comparison of methods for detecting nondeterministic BOLD fluctuaion in fMRI. Magn. Reson. Imaging 22, 197–203 (2004).

    Article  PubMed  Google Scholar 

  46. Ma, L., Wang, B., Chen, X. & Xiong, J. Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn. Reson. Imaging 25, 47–56 (2007).

    Article  PubMed  Google Scholar 

  47. Peltier, S. J., Polk, T. A. & Noll, D. A. Detecting low-frequency functional connectivity in fMRI using a self-organizing map (SOM) algorithm. Hum. Brain Mapp. 20, 220–226 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rogers, B. P., Morgan, V. L., Newton, A. T. & Gore, J. C. Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 10 May 2007 [epub ahead of print].

  49. Salvador, R. et al. Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. Neuroimage 35, 83–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007). A good demonstration that individual differences in resting state correlation patterns relate to individual variability in behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    CAS  Google Scholar 

  52. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Maguire, E. A. Neuroimaging studies of autobiographical event memory. Philos. Trans R. Soc. Lond. Biol Sci. 356, 1441–1451 (2001).

    Article  CAS  Google Scholar 

  54. Cabeza, R. et al. Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm. J. Cogn. Neurosci. 16, 1583–1594 (2004).

    Article  PubMed  Google Scholar 

  55. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T. Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–13343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He, B. J. et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Fox, M.D., Snyder, A.Z., Vincent, J.L. & Raichle, M.E. Intrinsic fluctuations within cortical systems account for inter-trial variability in human behavior. Neuron (in the press).

  58. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & Llmoniemi, R. J. Long-range temporal correaltions and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stam, C. J. & de Bruin, E. A. Scale-free dynamics of global functional connectivity in the human brain. Hum. Brain Mapp. 22, 97–109 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Leopold, D. A., Murayama, Y. & Logothetis, N. K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13, 423–433 (2003). Pioneering work on the neurophysiology of slow cortical fluctuations and their potential relevance for functional brain imaging.

    Article  Google Scholar 

  61. Gilden, D. L. Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Gilden, D. L., Thornton, T. & Mallon, M. W. 1/f noise in human cognition. Science 267, 1837–1839 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Wagenmakers, E.-J., Farrell, S. & Ratcliff, R. Estimation and interpretation of 1/fα noise in human cognition. Psychon. Bull. Rev. 11, 579–615 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sun, F. T., Miller, L. M. & D'Esposito, M. Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage 28, 227–237 (2005).

    Article  PubMed  Google Scholar 

  65. Nir, Y., Hasson, U., Levy, I., Yeshurun, Y. & Malach, R. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30, 1313–1324 (2006).

    Article  PubMed  Google Scholar 

  66. Biswal, B., Hudetz, A. G., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J. Cereb. Blood Flow Metab. 17, 301–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Li, S. et al. Cocaine administration decreases functional connectivity in the human primary visual and motor cortex as detected by MRI. Magn. Reson. Med. 43, 45–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Peltier, S. J. et al. Functional connectivity changes with concentration of sevoflurane anaesthesia. Neuroreport 16, 285–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Kiviniemi, V. et al. Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn. Reson. Imaging 23, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, H. et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 36, 144–152 (2007).

    Article  PubMed  Google Scholar 

  71. Greicius, M. D. & Menon, V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J. Cogn. Neurosci. 16, 1484–1492 (2004).

    Article  PubMed  Google Scholar 

  72. Arfanakis, K. et al. Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Magn. Reson. Imaging 18, 921–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Fransson, P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44, 2836–2845 (2006).

    Article  PubMed  Google Scholar 

  74. Arieli, A., Sterkin, A., Grinvald, A. & Aertsent, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1946 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Ress, D. & Heeger, D. J. Neural correlates of perception in early visual cortex. Nature Neurosci. 6, 414–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Pessoa, L. & Padmala, S. Quantitative prediction of perceptual decisions during near-threshold fear detection. Proc. Natl Acad. Sci. USA 102, 5612–5617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wagner, A. D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Pessoa, L., Gutierrez, E., Bandettini, P. A. & Ungerleider, L. G. Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35, 975–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Ress, D., Backus, B. T. & Heeger, D. J. Activity in primary visual cortex predicts performance in a visual detection task. Nature Neurosci. 3, 940–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category indentification. Nature Neurosci. 7, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Sapir, A., D'Avossa, G., McAvoy, M., Shulman, G. I. & Corbetta, M. BOLD signals for spatial attention predict performance in a motion discrimination task. Proc. Natl Acad. Sci. USA. 102, 17810–17815 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marder, E. & Weimann, J. M. Neurobiology of Motor Program Selection: New Approaches to Mechanisms of Behavioral Choice (eds. Kien, J., McCrohan, C. & Winlow, B.) 3–19 (Manchester University Press, Manchester, UK, 1991).

    Google Scholar 

  84. Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci. 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  85. Hampson, M., Olson, I. R., Leung, H.-C., Skudlarski, P. & Gore, J. C. Changes in functional connectivity of human MT/V5 with visual motion input. Neuroreport 15, 1315–1319 (2004).

    Article  PubMed  Google Scholar 

  86. Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P. & Phillips, M. D. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12, 582–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Morgan, V. L. & Price, R. R. The effect of sensorimotor activation on functional connectivity mapping with fMRI. Magn. Reson. Med. 22, 1069–1075 (2004).

    Google Scholar 

  88. Jiang, T., He, Y., Zang, Y. & Weng, X. Modulation of functional connectivity during the resting state and the motor task. Hum. Brain Mapp. 22, 63–71 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bartels, A. & Zeki, S. Brain dynamics during natural viewing conditions. A new guide for mapping connectivity in vivo. Neuroimage 24, 339–349 (2005).

    Article  PubMed  Google Scholar 

  90. Sun, F. T., Miller, L. M., Rao, A. A. & D'Esposito, M. Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb. Cortex 17, 1227–1234 (2006).

    Article  PubMed  Google Scholar 

  91. Waites, A. B., Stanislavsky, A., Abbott, D. F. & Jackson, G. D. Effect of prior cognitive state on resting state networks measured with functional connectivity. Hum. Brain Mapp. 24, 59–68 (2005).

    Article  PubMed  Google Scholar 

  92. Peltier, S. J. et al. Reductions in interhemispheric motor cortex functional connectivity after muscle fatigue. Brain Res. 1057, 10–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Fair, D. A. et al. A method for using blocked and event-related fMRI data to study 'resting state' functional connectivity. Neuroimage 35, 396–405 (2007).

    Article  PubMed  Google Scholar 

  94. Foster, D. J. & Wilson, M. A. Reverse replay of behavioral sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Quigley, M. A. et al. Role of the corpus callosum in functional connectivity. Am. J. Neuroradiol. 24, 208–212 (2003).

    PubMed  PubMed Central  Google Scholar 

  96. Koch, M. A., Norris, D. G. & Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16, 241–250 (2002).

    Article  PubMed  Google Scholar 

  97. Stark, C. E. L. & Squire, L. R. When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc. Natl Acad. Sci. USA 98, 12760–12766 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Horovitz, S.G. et al. Low frequency fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 27 Jun 2007 (epub ahead of print)

  99. Fukunaga, M. et al. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and light sleep. Magn. Reson. Imaging 24, 979–992 (2006).

    Article  PubMed  Google Scholar 

  100. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moosmann, M. et al. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20, 145–158 (2003).

    Article  PubMed  Google Scholar 

  102. Goldman, R. I., Stern, J. M., Engel, J. J. & Cohen, M. S. Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport 13, 2487–2492 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Laufs, H. et al. EEG-correlated fMRI of human alpha activity. Neuroimage 19, 1463–1476 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Laufs, H. et al. Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31, 1408–1418 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Spontaneous fluctuations in functional MRI signal reflect fluctuations in the underlying neuronal activity. Neuroimage: 13th Annual meeting of the organization for human brain mapping 36, S58 (2007).

    Google Scholar 

  106. Vanhatalo, S. et al. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl Acad. Sci. USA 101, 5053–5057 (2004). An important paper addressing the role of infra-slow brain oscillations as seen from the EEG perspective.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bruns, A., Eckhorn, R., Jokeit, H. & Ebner, A. Amplitude envelope correlation detects coupling amoung incoherent brain signals. Neuroreport 11, 1509–1514 (2000). A nice discussion of the role of amplitude modulation (power) in establishing patterns of spatially coherent brain activity.

    Article  CAS  PubMed  Google Scholar 

  108. Steriade, M. Impact of network activities on neuronal properties in corticothalamic systems. J. Neurophysiol. 86, 1–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. MacLean, J. N., Watson, B. O., Aaron, G. B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Golanov, E. V., Yamamoto, S. & Reis, D. J. Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. Am. J. Physiol. 266, R204–R214 (1994).

    CAS  PubMed  Google Scholar 

  112. Hua, S. Y., Raciborska, D. A., Trimble, W. S. & Charlton, M. P. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80, 3233–3246 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Deitcher, D. L. et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosphila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028–2039 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peltier, S. J. & Noll, D. T2* dependence of low frequency functional connectivity. Neuroimage 16, 985–992 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Yuste, R., MacLean, J. N., Smith, J. & Lanser, A. The cortex as a central patern generator. Nature Rev. Neurosci. 6, 477–483 (2005).

    Article  CAS  Google Scholar 

  117. Llinas, R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988). An early paper by one of the long term advocates of the importance of intrinsic activity for brain function.

    Article  CAS  PubMed  Google Scholar 

  118. Berger, H. Uber das elektrenkephalogramm des menschen. Arch.Psychiatr.Nervenkr. 87, 527–580 (1929).

    Article  Google Scholar 

  119. Grinvald, A., Arieli, A., Tsodyks, M. & Kenet, T. Neuronal assemblies: single cortical neurons are obedient members of a huge orchestra. Biopolymers 68, 422–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, L. et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI. Neuroimage 31, 496–504 (2006).

    Article  PubMed  Google Scholar 

  122. Wang, K. et al. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 9, 340–347 (2006).

    Google Scholar 

  123. Wang, K. et al. Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study. Hum. Brain Mapp. 28 Nov 2006 (epub ahead of print).

  124. Lowe, M. J. et al. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity- initial results. Radiology 224, 184–192 (2002).

    Article  PubMed  Google Scholar 

  125. Anand, A. et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry 57, 1079–1088 (2005).

    Article  PubMed  Google Scholar 

  126. Anand, A. et al. Antidepressant effect on connectivity of the mood-regulating circuit: An fMRI study. Neuropsychopharmacology 30, 1334–1344 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Greicius, M. D. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 8 Jan 2007 [epub ahead of print].

  128. Liu, H. et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 17, 19–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Liang, M. et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17, 209–213 (2006).

    Article  PubMed  Google Scholar 

  130. Zhou, Y. et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci. Lett. 417, 297–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Bluhm, R. L. et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33, 1004–1012 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tian, L. et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci. Lett. 400, 39–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Cao, Q. et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17, 1033–1036 (2006).

    Article  PubMed  Google Scholar 

  134. Cherkassky, V. L., Kana, R. K., Keller, T. A. & Just, M. A. Functional connectivity in a baseline resting-state network in autism. Neuroreport 17, 1687–1690 (2006).

    Article  PubMed  Google Scholar 

  135. Waites, A. B., Briellman, R. S., Saling, M. M., Abbott, D. F. & Jackson, G. D. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann. Neurol. 59, 335–343 (2006).

    Article  PubMed  Google Scholar 

  136. Liu, Y. et al. Whole brain functional connectivity in the early blind. Brain 130, 2085–2096 (2007).

    Article  PubMed  Google Scholar 

  137. Oakes, T. R. et al. Integrating VBM into the General Linear Model with voxelwise anatomical covariates. Neuroimage 34, 500–508 (2007).

    Article  PubMed  Google Scholar 

  138. Fair, D. A. et al. Development of distinct task control networks through segregation and integration. Proc. Natl Acad. Sci. USA (in the press).

  139. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fox, M.D., Marcus, D.M., Snyder, A.Z. & Raichle, M.E. BrainSCAPE: an online spontaneous correlation analysis processing environment for fMRI BOLD data. Neuroimage: 13th Annual meeting of the Organization for Human Brain Mapping 36, S43 (2007).

    Google Scholar 

  141. Shatz, C. J. Emergence of order in visual system development. Proc. Natl Acad. Sci. USA 93, 602–608 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nature Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  Google Scholar 

  143. Olshausen, B. A. The Visual Neurosciences (eds. Chalupa, L. M. & Werner, J. S.) 1603–1615 (MIT Press, Cambridge, Massachusetts, 2003).

    Google Scholar 

  144. Pouget, A., Dayan, P. & Zemel, R. S. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Kording, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006).

    Article  PubMed  Google Scholar 

  146. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. Functional connectivity: the pricipal component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Horwitz, B. The elusive concept of brain connectivity. Neuroimage 19, 466–470 (2003).

    Article  PubMed  Google Scholar 

  148. Ranganeth, C., Heller, A., Cohen, M. X., Brozinsky, C. J. & Rissman, J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 15, 997–1005 (2005).

    Article  Google Scholar 

  149. Hampson, M. et al. Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability. Neuroimage 31, 513–519 (2006).

    Article  PubMed  Google Scholar 

  150. Pezawas, L. et al. F-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neurosci. 8, 828–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Clark, L. C., Mishray, G. & Fox, R. P. Chronically implanted polargraphic electrodes. J. Appl. Physiol. 13, 85–91 (1958).

    Article  CAS  PubMed  Google Scholar 

  152. Cooper, R., Crow, H. J., Walter, W. G. & Winter, A. L. Regional control of cerebral vascular reactivity and oxygen supply in man. Brain Res. 3, 174–191 (1966).

    Article  CAS  PubMed  Google Scholar 

  153. Manil, J. et al. Properties of the spontaneous fluctuations in cortical oxygen pressure. Adv. Exp. Med. Biol. 169, 231–239 (1984).

    Article  CAS  PubMed  Google Scholar 

  154. Dora, E. & Kovach, A. G. B. Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physiol. Acad. Sci. Hung. 57, 261–275 (1981).

    CAS  PubMed  Google Scholar 

  155. Vern, B. A., Schuette, W. H., Leheta, B., Juel, V. C. & Radulovacki, M. Low-frequency oxcillations of cortical oxidative metabolism in waking and sleep. J. Cereb. Blood Flow Metab. 8, 215–226 (1988).

    Article  CAS  PubMed  Google Scholar 

  156. Vern, B. A. et al. Interhemispheric synchrony of slow oscillations of cortical blood volume and cytochrome aa3 redox state in unanesthetized rabbits. Brain Res. 775, 233–239 (1997). A useful paper that addresses slow, coherent oscillations in blood vessels and metabolism and provides a comprehensive source of references to early work.

    Article  CAS  PubMed  Google Scholar 

  157. Obrig, H. et al. Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. NeuroImage 12, 623–639 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Biswal, B. B., van Kylen, J. & Hyde, J. S. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity. NMR Biomed. 10, 165–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Katura, T., Tanaka, N., Obata, A., Sato, H. & Maki, A. Quantitative evaluation of interrelations between spontaneous low-requency oscillations in cerebral hemodynamics and systemic cardiovascular dynamics. Neuroimage 31, 1592–1600 (2006).

    Article  PubMed  Google Scholar 

  160. Bouron, A. Modualtion of spontaneous quantal release on neurotransmitters in the hippocampus. Prog. Neuorobiol. 63, 613–635 (2001).

    Article  CAS  Google Scholar 

  161. Lowen, S. B., Cash, S. S., Poo, M. & Teich, M. C. Quantal neurotransmitter secretion rate exhibits fractal behavior. J. Neurosci. 17, 5666–5677 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Avi Snyder and Justin Vincent for their insights and valuable suggestions on this manuscript. This work was supported by grants NS06833 and F30 NS054398-01.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Brain Spontaneous Correlation Analysis Processing Engine (BrainSCAPE)

Glossary

Blood oxygen level dependent signal

(BOLD). Signal used by fMRI as a non-invasive but indirect measure of changes in neuronal activity.

Noise

Modulation in a measured signal that is unrelated to the effect of interest. Noise is usually minimized through averaging, allowing the effect of interest to be emphasized.

Water phantom

Glass sphere containing water that is used to study fMRI signal properties in a non-biological system.

Linear regression

Computation of a scaling factor such that multiplication of a regressor time course by this scaling factor will remove the greatest amount of variance when subtracted from a signal of interest.

Voxel

A volume element that is the smallest distinguishable, box-shaped part of a three-dimensional space.

Power spectral density function

The distribution of power at each frequency in a time-varying signal, generally displayed with power on the y-axis and frequency along the x-axis.

Electroencephalography

(EEG). A technique used to measure neural activity by monitoring electrical signals from the brain that reach the scalp. EEG has good temporal resolution but relatively poor spatial resolution.

Magnetoencephalography

(MEG). A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity on a timescale of milliseconds.

Local field potential

Electrical fields recorded from microelectrodes in the brain that are thought to reflect the weighted average of input signals on the dendrites and cell bodies of neurons in the vicinity of the electrode.

Hypercapnia

Situation occurring when the amount of dissolved carbon dioxide in blood rises above its physiological mean of about 40 Torr.

Callosal agenesis

A rare birth defect in which the corpus callosum fails to develop.

Diffusion tensor imaging

(DTI). An MRI imaging technique that takes advantage of the restricted diffusion of water through myelinated nerve fibres in the brain to map the anatomical connectivity between brain areas.

Mentation

Mental activities of which a subject is consciously aware.

Mental imagery

The conscious recollection of an object or a scene in its absence.

Near-infrared spectroscopy

A form of optical imaging in which arrays of lasers and detectors are used to measure changes in the absorption of near-infrared light caused by neural activation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, M., Raichle, M. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8, 700–711 (2007). https://doi.org/10.1038/nrn2201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing