Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glucose neurotoxicity

Key Points

  • Neuronal damage can develop after persistent episodes of hyperglycaemia in diabetes.

  • Neuronal glucose uptake depends on the extracellular concentration of glucose. Glucose crosses the blood–brain barrier through membrane-bound insulin-independent glucose transporter proteins.

  • The normal intracellular fate of glucose is phosphorylation of the number-6-position carbon and entry into glycolysis, but in hyperglycaemia glucose is diverted to the polyol (sorbitol) metabolic pathway. This causes sorbitol accumulation and inappropriate osmolarity in cells. In addition, intracellular glucose is oxidized to form free radicals and reactive carbonyls, leading to oxidative and nitrosative stress.

  • Intracellular signalling cascades are also altered in hyperglycaemia. Mitogen-activated protein kinases, including p38 and Jun N-terminal kinase, are activated by high glucose levels and alter cell phenotype.

  • Non-enzymatic glycation of proteins by glucose causes the formation of advanced glycation end-products (AGEs). These have altered biochemical properties and can induce cellular changes through RAGE receptors.

  • The functional consequences of hyperglycaemia include nerve conduction abnormalities, pain and allodynia, and impaired axonal regeneration. Early pharmacological intervention in the chain of glucose-triggered adverse events could help to alleviate the symptoms associated with diabetic neuropathy.

Abstract

Neurons have a constantly high glucose demand, and unlike muscle cells they cannot accommodate episodic glucose uptake under the influence of insulin. Neuronal glucose uptake depends on the extracellular concentration of glucose, and cellular damage can ensue after persistent episodes of hyperglycaemia — a phenomenon referred to as glucose neurotoxicity. This article reviews the pathophysiological manifestation of raised glucose in neurons and how this can explain the major components of diabetic neuropathy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological and pathophysiological fates of glucose after absorption.
Figure 2: Metabolic pathways favoured by raised glucose levels.
Figure 3: Production of superoxide by the mitochondrial electron-transport chain.
Figure 4: Activation of p38 MAP kinase in dorsal root ganglia of rats with diabetes.
Figure 5: The effects of raised glucose levels on neurons and accessory cells.

Similar content being viewed by others

References

  1. Pardridge, W. M., Boado, R. J. & Farrell, C. R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem. 265, 18035–18040 (1990).

    CAS  PubMed  Google Scholar 

  2. Choeiri, C., Staines, W. & Messier, C. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 111, 19–34 (2002).

    CAS  PubMed  Google Scholar 

  3. Heidenreich, K. A., Gilmore, P. R. & Garvey, W. T. Glucose transport in primary cultured neurons. J. Neurosci. Res. 22, 397–407 (1989).

    CAS  Google Scholar 

  4. Patel, N. J., Llewelyn, J. G., Wright, D. W. & Thomas, P. K. Glucose and leucine uptake by rat dorsal root ganglia is not insulin sensitive. J. Neurol. Sci. 121, 159–162 (1994).

    CAS  PubMed  Google Scholar 

  5. Peters, A. et al. The selfish brain: competition for energy resources. Neurosci. Biobehav. Rev. 28, 143–180 (2004).

    CAS  PubMed  Google Scholar 

  6. Ibberson, M., Uldry, M. & Thorens, B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J. Biol. Chem. 275, 4607–4612 (2000).

    CAS  PubMed  Google Scholar 

  7. Piroli, G. G. et al. Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol. 452, 103–114 (2002).

    CAS  PubMed  Google Scholar 

  8. Lynch, R. M., Tompkins, L. S., Brooks, H. L., Dunn-Meynell, A. A. & Levin, B. E. Localization of glucokinase gene expression in the rat brain. Diabetes 49, 693–700 (2000).

    CAS  PubMed  Google Scholar 

  9. Arora, S. & Anubhuti. Role of neuropeptides in appetite regulation and obesity – a review. Neuropeptides 40, 375–401 (2006).

    CAS  PubMed  Google Scholar 

  10. Kang, L., Routh, V. H., Kuzhikandathil, E. V., Gaspers, L. D. & Levin, B. E. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 53, 549–559 (2004).

    CAS  PubMed  Google Scholar 

  11. Stewart, M. A., Sherman, W. R. & Anthony, S. Free sugars in alloxan diabetic rat nerve. Biochem. Biophys. Res. Commun. 22, 4–91 (1966).

    CAS  PubMed  Google Scholar 

  12. van Heyningen, R. Formation of polyols by the lens of the rat with 'sugar' cataracts. Nature 184, 194–195 (1959).

    CAS  Google Scholar 

  13. Gabbay, K. H., Merola, L. O. & Field, R. A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 151, 209–210 (1966).

    CAS  PubMed  Google Scholar 

  14. Greene, D. A. & Winegrad, A. I. In vitro studies of the substrates for energy production and the effects of insulin on glucose utilization in the neural components of peripheral nerve. Diabetes 28, 878–887 (1979).

    CAS  PubMed  Google Scholar 

  15. Burg, M. B. Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu. Kidney Int. 33, 635–641 (1988).

    CAS  PubMed  Google Scholar 

  16. Bagnasco, S. M., Balaban, R., Fales, H. M., Yang, Y.-M. & Burg, M. B. Predominant osmotically active solutes in rat and rabbit renal medullas. J. Biol. Chem. 261, 5872–5877 (1986).

    CAS  PubMed  Google Scholar 

  17. Nishimura, C., Lou, M. F. & Kinoshita, J. H. Depletion of myo-inositol and amino acids in galactosemic neuropathy. J. Neurochem. 49, 290–295 (1987).

    CAS  PubMed  Google Scholar 

  18. Ludvigson, M. A. & Sorenson, R. L. Immunohistochemical localization of aldose reductase. I. Enzyme purification and antibody preparation - localization in peripheral nerve, artery and testis. Diabetes 29, 438–449 (1980).

    CAS  PubMed  Google Scholar 

  19. Sharma, A. K. & Thomas, P. K. Peripheral nerve structure and function in experimental diabetes. J. Neurol. Sci. 23, 1–15 (1974).

    CAS  PubMed  Google Scholar 

  20. Sima, A. A. et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. New Engl. J. Med. 319, 548–555 (1988).

    CAS  PubMed  Google Scholar 

  21. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000). This study provided an important hypothesis about the cause of hyperglycaemic damage and presented evidence for mitochondrial superoxide production.

    CAS  Google Scholar 

  22. Obrosova, I. G. et al. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J. 16, 123–125 (2002).

    CAS  PubMed  Google Scholar 

  23. Obrosova, I. G. et al. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J. 20 Dec 2004 (doi: 10.1096/fj.04-1913fje).

    CAS  PubMed  Google Scholar 

  24. Obrosova, I. G. et al. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 54, 3435–3441 (2005). Together with references 22 and 23, this paper provided a definitive elucidation of the connections between glucose, the polyol pathway and oxidative and nitrosative stress, in addition to a proposed relationship with PARP activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cameron, N. E., Cotter, M. A. & Maxfield, E. K. Anti-oxidant treatment prevents the development of peripheral nerve dysfunction in streptozotocin-diabetic rats. Diabetologia 36, 299–304 (1993).

    CAS  PubMed  Google Scholar 

  26. Cameron, N. E., Cotter, M. A., Archibald, V., Dines, K. C. & Maxfield, E. K. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 37, 449–459 (1994).

    CAS  PubMed  Google Scholar 

  27. Jakus, V. & Rietbrock, N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol. Rev. 53, 131–142 (2004).

    CAS  Google Scholar 

  28. Singh, R., Barden, A., Mori, T. & Beilin, L. Advanced glycation end-products: a review. Diabetologia 44, 129–146 (2001).

    CAS  PubMed  Google Scholar 

  29. Haslbeck, K. M. et al. Activation of the RAGE pathway: a general mechanism in the pathogenesis of polyneuropathies? Neurol. Res. 29, 103–110 (2007).

    CAS  PubMed  Google Scholar 

  30. Thornalley, P. J. Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem. J. 254, 751–755 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmed, N. et al. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci. 44, 5287–5292 (2003).

    PubMed  Google Scholar 

  32. Monnier, V. M. Aminoguanidine and diabetic neuropathy. Eur. J. Endocrinol. 134, 398–400 (1996).

    CAS  PubMed  Google Scholar 

  33. Metz, T. O., Alderson, N. L., Thorpe, S. R. & Baynes, J. W. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch. Biochem. Biophys. 419, 41–49 (2003).

    CAS  PubMed  Google Scholar 

  34. Purves, T. D. et al. A role for mitogen-activated protein kinases in the aetiology of diabetic neuropathy. FASEB J. 15, 2508–2514 (2001). This study provided a definitive demonstration that glucose activates MAP kinases in neurons as well as a demonstration that a similar mechanism operates in diabetes in vivo.

    CAS  PubMed  Google Scholar 

  35. Tomlinson, D. R. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42, 1271–1281 (1999).

    CAS  PubMed  Google Scholar 

  36. Price, S. A., Agthong, S., Middlemas, A. B. & Tomlinson, D. R. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 53, 1851–1856 (2004). This study linked activation of p38 to abnormal nerve conduction and established an involvement of the polyol pathway in p38 phosphorylation.

    CAS  PubMed  Google Scholar 

  37. Eliasson, S. G. Nerve conduction changes in experimental diabetes. J. Clin. Invest. 43, 2353–2358 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gregersen, G. Diabetic neuropathy: influence of age, sex, metabolic control, and duration of diabetes on motor conduction velocity. Neurology 17, 972–980 (1967).

    CAS  PubMed  Google Scholar 

  39. Yang, S. H., Sharrocks, A. D. & Whitmarsh, A. J. Transcriptional regulation by the MAP kinase signaling cascades. Gene 320, 3–21 (2003).

    CAS  PubMed  Google Scholar 

  40. Wittmack, E. K., Rush, A. M., Hudmon, A., Waxman, S. G. & Dib-Hajj, S. D. Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J. Neurosci. 25, 6621–6630 (2005). This paper provided an elegant demonstration of phosphorylation of the voltage-gated sodium channel Na v 1.6 by p38, providing an explanation for the slowing of nerve conduction.

    CAS  PubMed  Google Scholar 

  41. Moore, J. W., Joyner, R. W., Brill, M. H., Waxman, S. D. & Najar-Joa, M. Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters. Biophys. J. 21, 147–160 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Russell, J. W., Sullivan, K. A., Windebank, A. J., Herrman, D. N. & Feldman, E. L. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis. 6, 347–363 (1999).

    CAS  PubMed  Google Scholar 

  43. Terrasson, J. et al. p73-dependent apoptosis through death receptor: impairment by human cytomegalovirus infection. Cancer Res. 65, 2787–2794 (2005).

    CAS  PubMed  Google Scholar 

  44. Walsh, G. S., Orike, N., Kaplan, D. R. & Miller, F. D. The invulnerability of adult neurons: a critical role for p73. J. Neurosci. 24, 9638–9647 (2004). This paper provided an understanding of why adult sensory neurons are resistant to apoptosis, triggered by several physiological and pathophysiological stimuli.

    CAS  PubMed  Google Scholar 

  45. Cheng, C. & Zochodne, D. W. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52, 2363–2371 (2003). This study provided a conclusive demonstration that apoptosis does not occur in the sensory neurons of rats with long-term experimental diabetes.

    CAS  PubMed  Google Scholar 

  46. Fernyhough, P. et al. Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 48, 881–889 (1999).

    CAS  PubMed  Google Scholar 

  47. Hellweg, R., Raivich, G., Hartung, H.-D., Hock, C. & Kreutzberg, G. W. Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Exp. Neurol. 130, 24–30 (1994).

    CAS  PubMed  Google Scholar 

  48. Fernyhough, P., Diemel, L. T. & Tomlinson, D. R. Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozocin-diabetic rats. Diabetologia 41, 300–306 (1998).

    CAS  PubMed  Google Scholar 

  49. Schmidt, R. E. et al. Effect of streptozotocin-induced diabetes on NGF, p75NTR and TrkA content of prevertebral and paravertebral rat sympathetic ganglia. Brain Res. 867, 149–156 (2000).

    CAS  PubMed  Google Scholar 

  50. Lee, P. G., Hohman, T. C., Cai, F., Regalia, J. & Helke, C. J. Streptozotocin-induced diabetes causes metabolic changes and alterations in neurotrophin content and retrograde transport in the cervical vagus nerve. Exp. Neurol. 170, 149–161 (2001).

    CAS  PubMed  Google Scholar 

  51. Fernyhough, P. et al. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur. J. Neurosci. 7, 1107–1110 (1995). This paper confirmed the earlier finding of reduced NGF support of sensory neurons in diabetic rats and demonstrated that exogenous NGF can restore normal expression of responsive genes that are defective in experimental diabetes.

    CAS  PubMed  Google Scholar 

  52. Whitworth, I. H. et al. Targeted delivery of nerve growth factor via fibronectin conduits assists nerve regeneration in control and diabetic rats. Eur. J. Neurosci. 7, 2220–2225 (1995).

    CAS  PubMed  Google Scholar 

  53. Bennett, G. S., Garrett, N. E., Diemel, L. T., Brain, S. D. & Tomlinson, D. R. Neurogenic cutaneous vasodilatation and plasma extravasation in diabetic rats: effect of insulin and nerve growth factor. Br. J. Pharmacol. 124, 1573–1579 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mizisin, A. P., Calcutt, N. A., Tomlinson, D. R., Gallagher, A. & Fernyhough, P. Neurotrophin-3 reverses nerve conduction velocity deficits in streptozotocin-diabetic rats. J. Peripher. Nerv. Syst. 4, 211–221 (1999).

    CAS  PubMed  Google Scholar 

  55. Suzuki, T., Sekido, H., Kato, N., Nakayama, Y. & Yabe-Nishimura, C. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway. J. Neurochem. 91, 1430–1438 (2004).

    CAS  PubMed  Google Scholar 

  56. Ohi, T. et al. Therapeutic effects of aldose reductase inhibitor on experimental diabetic neuropathy through synthesis/secretion of nerve growth factor. Exp. Neurol. 151, 215–220 (1998).

    CAS  PubMed  Google Scholar 

  57. Hounsom, L., Horrobin, D. F., Tritschler, H., Corder, R. & Tomlinson, D. R. A lipoic acid-gamma linolenic acid congugate is effective against multiple indices of experimental diabetic neuropathy. Diabetologia 41, 839–843 (1998).

    CAS  PubMed  Google Scholar 

  58. Hounsom, L., Corder, R., Patel, J. & Tomlinson, D. R. Oxidative stress participates in the breakdown of neuronal phenotype in experimental diabetic neuropathy. Diabetologia 44, 424–428 (2001).

    CAS  PubMed  Google Scholar 

  59. Obrosova, I. G., Fathallah, L. & Stevens, M. J. Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp. Neurol. 172, 211–219 (2001).

    CAS  PubMed  Google Scholar 

  60. Kuruvilla, R. & Eichberg, J. Depletion of phospholipid arachidonoyl-containing molecular species in a human Schwann cell line grown in elevated glucose and their restoration by an aldose reductase inhibitor. J. Neurochem. 71, 775–783 (1998).

    CAS  PubMed  Google Scholar 

  61. Song, Z. et al. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol. Cell. Neurosci. 23, 638–647 (2003). This study provided an elegant demonstration of the importance of aldose reductase and of Schwann cell dysfunction in defective nerve conduction in diabetic mice.

    CAS  PubMed  Google Scholar 

  62. Pedraza, L., Huang, J.-K. & Colman, D. R. Organizing principles of the axoglial apparatus. Neuron 30, 335–344 (2001).

    CAS  PubMed  Google Scholar 

  63. Sima, A. A. F., Nathaniel, V., Bril, V., McEwen, T. A. J. & Greene, D. A. Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J. Clin. Invest. 81, 349–364 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sima, A. A. F., Lattimer, S. A., Yagihashi, S. & Greene, D. A. Axo-glial dysjunction. A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic bio-breeding rat. J. Clin. Invest. 77, 474–484 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Magnani, P. et al. Glucose transporters in rat peripheral nerve: paranodal expression of GLUT1 and GLUT3. Metabolism 45, 1466–1473 (1996).

    CAS  PubMed  Google Scholar 

  66. Brown, A. A. et al. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats. J. Neurosci. Res. 65, 139–149 (2001).

    CAS  PubMed  Google Scholar 

  67. Eckersley, L. Role of the Schwann cell in diabetic neuropathy. Int. Rev. Neurobiol. 50, 293–321 (2002).

    CAS  PubMed  Google Scholar 

  68. Zochodne, D. W., Guo, G. F., Magnowski, B. & Bangash, M. Regenerative failure of diabetic nerves bridging transection injuries. Diabetes Metab. Res. Rev. 23, 490–496 (2007).

    PubMed  Google Scholar 

  69. Hazell, A. S. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem. Int. 50, 941–953 (2007).

    CAS  PubMed  Google Scholar 

  70. Pellerin, L. et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55, 1251–1262 (2007).

    PubMed  Google Scholar 

  71. Jacquin-Becker, C. & Labourdette, G. Regulation of aldose reductase expression in rat astrocytes in culture. Glia 20, 135–144 (1997).

    CAS  PubMed  Google Scholar 

  72. Wiesinger, H., Hamprecht, B. & Dringen, R. Metabolic pathways for glucose in astrocytes. Glia 21, 22–34 (1997).

    CAS  PubMed  Google Scholar 

  73. Baud, O. et al. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J. Neurosci. 24, 1531–1540 (2004).

    CAS  PubMed  Google Scholar 

  74. Idris, I., Thomson, G. A. & Sharma, J. C. Diabetes mellitus and stroke. Int. J. Clin. Pract. 60, 48–56 (2006).

    CAS  PubMed  Google Scholar 

  75. Baliga, B. S. & Weinberger, J. Diabetes and stroke: part one–risk factors and pathophysiology. Curr. Cardiol. Rep. 8, 23–28 (2006).

    PubMed  Google Scholar 

  76. Burroughs, V. & Weinberger, J. Diabetes and stroke: part two–treating diabetes and stress hyperglycemia in hospitalized stroke patients. Curr. Cardiol. Rep. 8, 29–32 (2006).

    PubMed  Google Scholar 

  77. Gilmore, R. M. & Stead, L. G. The role of hyperglycemia in acute ischemic stroke. Neurocrit. Care 5, 153–158 (2006).

    PubMed  Google Scholar 

  78. Yabe-Nishimura, C. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev. 50, 21–33 (1998).

    CAS  PubMed  Google Scholar 

  79. Greene, D. A., De Jesus, P. V. Jr & Winegrad, A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J. Clin. Invest. 55, 1326–1336 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gregersen, G. Variations in motor conduction velocity produced by acute changes of the metabolic state in diabetic patients. Diabetologia 4, 273–277 (1968).

    CAS  PubMed  Google Scholar 

  81. Llewelyn, J. G., Tomlinson, D. R. & Thomas, P. K. in Peripheral neuropathy (eds Dyck, P. J. & Thomas, P. K.) 1951–1991 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  82. Tomlinson, D. R., Holmes, P. R. & Mayer, J. H. Reversal, by treatment with an aldose reductase inhibitor, of impaired axonal transport and motor nerve conduction velocity in experimental diabetes mellitus. Neurosci. Lett. 31, 189–193 (1982).

    CAS  PubMed  Google Scholar 

  83. Tomlinson, D. R., Moriarty, R. J. & Mayer, J. H. Prevention and reversal of defective axonal transport and motor nerve conduction velocity in rats with experimental diabetes by treatment with the aldose reductase inhibitor sorbinil. Diabetes 33, 470–476 (1984).

    CAS  PubMed  Google Scholar 

  84. Jakobsen, J. Peripheral nerves in early experimental diabetes. Diabetologia 14, 113–119 (1978).

    CAS  PubMed  Google Scholar 

  85. Jakobsen, J. Early and preventable changes of peripheral nerve structure and function in insulin-deficient diabetic rats. J. Neurol. Neurosurg. Psychiatry 42, 509–518 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeifer, M. A., Schumer, M. P. & Gelber, D. A. Aldose reductase inhibitors: the end of an era or the need for different trial designs? Diabetes 46, S82–S89 (1997).

    CAS  PubMed  Google Scholar 

  87. Greene, D. A., Arezzo, J. C. & Brown, M. B. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 53, 580–591 (1999).

    CAS  PubMed  Google Scholar 

  88. Said, G. Diabetic neuropathy—a review. Nature Clin. Pract. Neurol. 3, 331–340 (2007).

    Google Scholar 

  89. Spruce, M. C., Potter, J. & Coppini, D. V. The pathogenesis and management of painful diabetic neuropathy: a review. Diabet. Med. 20, 88–98 (2003).

    CAS  PubMed  Google Scholar 

  90. Boulton, A. J. M., Drury, J., Clarke, B. & Ward, J. D. Continuous subcutaneous insulin infusion in the management of painful diabetic neuropathy. Diabetes Care 5, 386–390 (1982).

    CAS  PubMed  Google Scholar 

  91. Archer, A. G., Watkins, P. J., Thomas, P. K., Sharma, A. K. & Payan, J. The natural history of acute painful neuropathy in diabetes mellitus. J. Neurol. Neurosurg. Psychiatry 46, 491–499 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bertelsmann, F. W. et al. Peripheral nerve function in patients with painful diabetic neuropathy treated with continuous subcutaneous insulin infusion. J. Neurol. Neurosurg. Psychiatry 50, 1337–1341 (1987). This study provided a clear demonstration that glucose per se can affect peripheral nerve function in human subjects.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Morley, G. K., Mooradian, A. D., Levine, A. S. & Morley, J. E. Mechanism of pain in diabetic peripheral neuropathy. Effect of glucose on pain perception in humans. Am. J. Med. 77, 79–82 (1984).

    CAS  PubMed  Google Scholar 

  94. Lee, J. H. & McCarty, R. Glycemic control of pain threshold in diabetic and control rats. Physiol. Behav. 47, 225–230 (1990).

    CAS  PubMed  Google Scholar 

  95. Chan, A. W. et al. Chronic pain in patients with diabetes mellitus: comparison with a non-diabetic population. The Pain Clinic 3, 147–159 (1990).

    Google Scholar 

  96. Oyibo, S. O., Prasad, Y. D., Jackson, N. J., Jude, E. B. & Boulton, A. J. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet. Med. 19, 870–873 (2002).

    CAS  PubMed  Google Scholar 

  97. Dobretsov, M., Hastings, S. L., Stimers, J. R. & Zhang, J. M. Mechanical hyperalgesia in rats with chronic perfusion of lumbar dorsal root ganglion with hyperglycemic solution. J. Neurosci. Methods 110, 9–15 (2001).

    CAS  PubMed  Google Scholar 

  98. Dobretsov, M., Hastings, S. L., Romanovsky, D., Stimers, J. R. & Zhang, J. M. Mechanical hyperalgesia in rat models of systemic and local hyperglycemia. Brain Res. 960, 174–183 (2003).

    CAS  PubMed  Google Scholar 

  99. Daulhac, L. et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via NMDA-dependent mechanisms. Mol. Pharmacol. 70, 1246–1254 (2006).

    CAS  PubMed  Google Scholar 

  100. Sweitzer, S. M. et al. Antinociceptive action of a p38α MAPK inhibitor, SD-282, in a diabetic neuropathy model. Pain 109, 409–419 (2004).

    CAS  PubMed  Google Scholar 

  101. Calcutt, N. A., Jorge, M. C., Yaksh, T. L. & Chaplan, S. R. Tactile allodynia and formalin hyperalgesia in streptozotocin- diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain 68, 293–299 (1996).

    CAS  PubMed  Google Scholar 

  102. Courteix, C., Eschalier, A. & Lavarenne, J. Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53, 81–88 (1993).

    CAS  PubMed  Google Scholar 

  103. Fox, A., Eastwood, C., Gentry, C., Manning, D. & Urban, L. Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  104. Malcangio, M. & Tomlinson, D. R. A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 76, 151–157 (1998).

    CAS  PubMed  Google Scholar 

  105. Calcutt, N. A., Stiller, C.-O., Gustafsson, H. & Malmberg, A. B. Elevated substance-P-like immunoreactivity levels in spinal dialysates during the formalin test in normal and diabetic rats. Brain Res. 856, 20–27 (2000).

    CAS  PubMed  Google Scholar 

  106. Calcutt, N. A. Potential mechanisms of neuropathic pain in diabetes. Int. Rev. Neurobiol. 50, 205–228 (2002).

    CAS  PubMed  Google Scholar 

  107. Aley, K. O. & Levine, J. D. Rapid onset pain induced by intravenous streptozotocin in the rat. J. Pain 2, 146–150 (2001).

    CAS  PubMed  Google Scholar 

  108. Calcutt, N. A., Malmberg, A. B., Yamamoto, T. & Yaksh, T. L. Tolrestat treatment prevents modification of the formalin test model of prolonged pain in hyperglycemic rats. Pain 58, 413–420 (1994).

    CAS  PubMed  Google Scholar 

  109. Pertovaara, A., Wei, H., Kalmari, J. & Ruotsalainen, M. Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp. Neurol. 167, 425–434 (2001).

    CAS  PubMed  Google Scholar 

  110. Tomiyama, M. et al. Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res. Mol. Brain Res. 136, 275–281 (2005).

    CAS  PubMed  Google Scholar 

  111. Daulhac, L. et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol. Pharmacol. 70, 1246–1254 (2006).

    CAS  PubMed  Google Scholar 

  112. Jin, S. X., Zhuang, Z. Y., Woolf, C. J. & Ji, R. R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 23, 4017–4022 (2003).

    CAS  PubMed  Google Scholar 

  113. Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. & Inoue, K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89–95 (2004).

    PubMed  Google Scholar 

  114. Svensson, C. I. et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J. Neurochem. 86, 1534–1544 (2003).

    CAS  PubMed  Google Scholar 

  115. Ramos, K. M., Jiang, Y., Svensson, C. I. & Calcutt, N. A. Pathogenesis of spinally mediated hyperalgesia in diabetes. Diabetes 56, 1569–1576 (2007). An elegant study that showed that COX2 is induced in the spinal cord of diabetic rats and its involvement in hyperalgesia — this is the clearest demonstration of a potential spinal involvement in diabetic neuropathic pain.

    CAS  PubMed  Google Scholar 

  116. Bisby, M. A. Axonal transport of labeled protein and regeneration rate in nerves of streptozocin-diabetic rats. Exp. Neurol. 69, 74–84 (1980).

    CAS  PubMed  Google Scholar 

  117. Ekstrom, A. R. & Tomlinson, D. R. Impaired nerve regeneration in streptozotocin-diabetic rats. Effects of treatment with an aldose reductase inhibitor. J. Neurol. Sci. 93, 231–237 (1989).

    CAS  PubMed  Google Scholar 

  118. Kennedy, J. M. & Zochodne, D. W. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms. Brain 123, 2118–2129 (2000). One of several studies that demonstrated impaired axonal regeneration in diabetic rats — this was not the first, but it is the most informative.

    PubMed  Google Scholar 

  119. Bradley, J. L. et al. Myelinated nerve fibre regeneration in diabetic sensory polyneuropathy: correlation with type of diabetes. Acta Neuropathol. (Berl.) 90, 403–410 (1995).

    CAS  Google Scholar 

  120. Ahmed, N. & Thornalley, P. J. Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochem. Soc. Trans. 31, 1417–1422 (2003).

    CAS  PubMed  Google Scholar 

  121. Thornalley, P. J., Langborg, A. & Minhas, H. S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109–116 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Thornalley, P. J. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol. 50, 37–57 (2002).

    CAS  PubMed  Google Scholar 

  123. Cullum, N. A., Mahon, J., Stringer, K. & McLean, W. G. Glycation of rat sciatic nerve tubulin in experimental diabetes mellitus. Diabetologia 34, 387–389 (1991).

    CAS  PubMed  Google Scholar 

  124. Thornalley, P. J. et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375, 581–592 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tomaselli, K. J. et al. Expression of beta 1 integrins in sensory neurons of the dorsal root ganglion and their functions in neurite outgrowth on two laminin isoforms. J. Neurosci. 13, 4880–4888 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Charonis, A. S. & Tsilbary, E. C. Structural and functional changes of laminin and type IV collagen after nonenzymatic glycation. Diabetes 41 (Suppl. 2), 49–51 (1992).

    CAS  PubMed  Google Scholar 

  127. Lubec, G. & Pollak, A. Reduced susceptibility of nonenzymatically glucosylated glomerular basement membrane to proteases: is thickening of diabetic glomerular basement membranes due to reduced proteolytic degradation? Ren. Physiol. 3, 4–8 (1980).

    CAS  PubMed  Google Scholar 

  128. McCarthy, A. D., Uemura, T., Etcheverry, S. B. & Cortizo, A. M. Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix. Int. J. Biochem. Cell Biol. 36, 840–848 (2004).

    CAS  PubMed  Google Scholar 

  129. Paul, R. G. & Bailey, A. J. The effect of advanced glycation end-product formation upon cell-matrix interactions. Int. J. Biochem. Cell Biol. 31, 653–660 (1999).

    CAS  PubMed  Google Scholar 

  130. Huttunen, H. J., Fages, C. & Rauvala, H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-κB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem. 274, 19919–19924 (1999).

    CAS  Google Scholar 

  131. Rong, L. L. et al. RAGE: a journey from the complications of diabetes to disorders of the nervous system - striking a fine balance between injury and repair. Restor. Neurol. Neurosci. 23, 355–365 (2005).

    CAS  PubMed  Google Scholar 

  132. Federoff, H. J., Lawrence, D. & Brownlee, M. Nonenzymatic glycosylation of laminin and the laminin peptide CIKVAVS inhibits neurite outgrowth. Diabetes 42, 509–513 (1993).

    CAS  PubMed  Google Scholar 

  133. Luo, Z. J., King, R. H., Lewin, J. & Thomas, P. K. Effects of nonenzymatic glycosylation of extracellular matrix components on cell survival and sensory neurite extension in cell culture. J. Neurol. 249, 424–431 (2002).

    CAS  PubMed  Google Scholar 

  134. Ozturk, G., Sekeroglu, M. R., Erdogan, E. & Ozturk, M. The effect of non-enzymatic glycation of extracellular matrix proteins on axonal regeneration in vitro. Acta Neuropathol. (Berl.) 112, 627–632 (2006).

    Google Scholar 

  135. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001). This paper provides a detailed review of possible mechanisms of glucose-mediated vascular damage, presenting a unifying hypothesis that links mechanisms in nerve, kidney and retina; one need not agree with the entire hypothesis to appreciate its value in provoking further studies.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Diabetes UK (formerly The British Diabetic Society) for many years of financial support.

Author information

Authors and Affiliations

Authors

Glossary

Postprandial state

The state immediately after feeding during which absorption of glucose from the gastrointestinal tract into the blood occurs; this is the time at which plasma glucose concentrations are at their highest and insulin secretion is maximal in healthy individuals.

Blood–brain barrier

An anatomical and physiological barrier that selectively transfers solutes from the blood to the cerebrospinal fluid; the barrier is formed by tight junctions of cerebral capillary endothelial cells.

Non-enzymatic glycation

The addition of glucose (or other saccharides) to macromolecules without the need for enzyme catalysis.

Schiff base

Named after Hugo Schiff, this is a functional group that contains a carbon–nitrogen double bond with the nitrogen atom connected to an aryl or an alkyl group but not to a hydrogen atom.

Sural nerve

One of the terminal branches of the sciatic nerve. It runs down the lateral aspect of the calf and ankle and supplies the outer part of the foot. It carries mostly sensory fibres.

Node of Ranvier

An interruption in the myelin sheath that covers axons. Nodes of Ranvier facilitate the propagation of action potentials by saltatory conduction.

Streptozotocin

Naturally occuring chemical that when given at an appropriate dose, destroys a large fraction of the insulin-secreting cells of the pancreas, causing non-lethal insulin-deficiency diabetes.

Myelin loops

The terminal folds of the myelin sheath that adhere to the axonal membrane on either side of the node of Ranvier.

Allodynia

Pain that is evoked by normally innocuous stimuli.

Hyperalgesia

An increased pain response to normally noxious stimuli.

Hyperinsulinaemia

An abnormally high concentration of insulin in the blood, usually generated by feedback-driven inadequacy of glucose removal, which is a common result of insulin insensitivity in type II diabetes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomlinson, D., Gardiner, N. Glucose neurotoxicity. Nat Rev Neurosci 9, 36–45 (2008). https://doi.org/10.1038/nrn2294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing