Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1

Abstract

p38α mitogen-activated protein kinase (p38α) is activated by a variety of mechanisms, including autophosphorylation initiated by TGFβ-activated kinase 1 binding protein 1 (TAB1) during myocardial ischemia and other stresses. Chemical-genetic approaches and coexpression in mammalian, bacterial and cell-free systems revealed that mouse p38α autophosphorylation occurs in cis by direct interaction with TAB1(371–416). In isolated rat cardiac myocytes and perfused mouse hearts, TAT-TAB1(371–416) rapidly activates p38 and profoundly perturbs function. Crystal structures and characterization in solution revealed a bipartite docking site for TAB1 in the p38α C-terminal kinase lobe. TAB1 binding stabilizes active p38α and induces rearrangements within the activation segment by helical extension of the Thr-Gly-Tyr motif, allowing autophosphorylation in cis. Interference with p38α recognition by TAB1 abolishes its cardiac toxicity. Such intervention could potentially circumvent the drawbacks of clinical pharmacological inhibitors of p38 catalytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dual phosphorylation of p38 during myocardial ischemia is consistent with the pattern of TAB1-initiated p38 activation.
Figure 2: Thermodynamic characterization of TAB1–p38α complex formation on ATP affinity and autophosphorylation in cis.
Figure 3: Structural features of the p38α-TAB1 interaction.
Figure 4: Overview of the key rearrangements within p38α on complex formation with TAB1(384–412).
Figure 5: Verification of the residues within TAB1 responsible for p38α autoactivation and their discriminatory effect on p38β.
Figure 6: The effects of cell-permeable forms of TAB1(371–416) on the myocardium.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cuenda, A. & Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773, 1358–1375 (2007).

    Article  CAS  Google Scholar 

  2. Mudgett, J.S. et al. Essential role for p38α mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA 97, 10454–10459 (2000).

    Article  CAS  Google Scholar 

  3. Beardmore, V.A. et al. Generation and characterization of p38β (MAPK11) gene-targeted mice. Mol. Cell Biol. 25, 10454–10464 (2005).

    Article  CAS  Google Scholar 

  4. Lee, J.C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  Google Scholar 

  5. Gum, R.J. et al. Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB 203580, by alteration of one or more amino acids within the ATP binding pocket. J. Biol. Chem. 273, 15605–15610 (1998).

    Article  CAS  Google Scholar 

  6. Dominguez, C., Powers, D.A. & Tamayo, N. p38 MAP kinase inhibitors: many are made, but few are chosen. Curr. Opin. Drug Discov. Devel. 8, 421–430 (2005).

    CAS  PubMed  Google Scholar 

  7. Genovese, M.C. Inhibition of p38: has the fat lady sung? Arthritis Rheum. 60, 317–320 (2009).

    Article  Google Scholar 

  8. Hammaker, D. & Firestein, G.S. “Go upstream, young man”: lessons learned from the p38 saga. Ann. Rheum. Dis. 69 (suppl. 1), i77–i82 (2010).

    Article  CAS  Google Scholar 

  9. Martin, D.E., Felice De Nicola, G. & Marber, M.S. New therapeutic targets in cardiology: p38α mitogen-activated protein kinase for ischemic heart disease. Circulation 126, 357–368 (2012).

    Article  Google Scholar 

  10. Tanno, M. et al. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ. Res. 93, 254–261 (2003).

    Article  CAS  Google Scholar 

  11. Li, J., Miller, E.J., Ninomiya-Tsuji, J., Russell, R.R. III & Young, L.H. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing its recruitment to tab1 in the ischemic heart. Circ. Res. 97, 872–879 (2005).

    Article  CAS  Google Scholar 

  12. Ota, A., Zhang, J., Ping, P., Han, J. & Wang, Y. Specific regulation of noncanonical p38α activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Circ. Res. 106, 1404–1412 (2010).

    Article  CAS  Google Scholar 

  13. Fiedler, B. et al. cGMP-dependent protein kinase type I inhibits TAB1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J. Biol. Chem. 281, 32831–32840 (2006).

    Article  CAS  Google Scholar 

  14. Shi, J. et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38α MAPK pathway. Proc. Natl. Acad. Sci. USA 107, 4188–4193 (2010).

    Article  CAS  Google Scholar 

  15. Ge, B. et al. MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science 295, 1291–1294 (2002).

    Article  CAS  Google Scholar 

  16. Cheung, P.C., Campbell, D.G., Nebreda, A.R. & Cohen, P. Feedback control of the protein kinase TAK1 by SAPK2a/p38α. EMBO J. 22, 5793–5805 (2003).

    Article  CAS  Google Scholar 

  17. Diskin, R., Lebendiker, M., Engelberg, D. & Livnah, O. Structures of p38α active mutants reveal conformational changes in L16 loop that induce autophosphorylation and activation. J. Mol. Biol. 365, 66–76 (2007).

    Article  CAS  Google Scholar 

  18. Salvador, J.M. et al. Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases. Nat. Immunol. 6, 390–395 (2005).

    Article  CAS  Google Scholar 

  19. Lochhead, P.A. Protein kinase activation loop autophosphorylation in cis: overcoming a Catch-22 situation. Sci. Signal. 2, e4 (2009).

    Article  Google Scholar 

  20. Wilson, K.P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem. 271, 27696–27700 (1996).

    Article  CAS  Google Scholar 

  21. Zhang, W.X. et al. Time-resolved Forster resonance energy transfer assays for the binding of nucleotide and protein substrates to p38α protein kinase. Anal. Biochem. 343, 76–83 (2005).

    Article  CAS  Google Scholar 

  22. Shrestha, A., Hamilton, G., O'Neill, E., Knapp, S. & Elkins, J.M. Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Protein Expr. Purif. 81, 136–143 (2012).

    Article  CAS  Google Scholar 

  23. Jacquet, S. et al. The role of RIP2 in p38 MAPK activation in the stressed heart. J. Biol. Chem. 283, 11964–11971 (2008).

    Article  CAS  Google Scholar 

  24. Kumphune, S. et al. A chemical genetic approach reveals that p38α MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580. J. Biol. Chem. 285, 2968–2975 (2010).

    Article  CAS  Google Scholar 

  25. Sicard, P. et al. The activation of p38α, and not p38β, mitogen-activated protein kinase is required for ischemic preconditioning. J. Mol. Cell Cardiol. 48, 1324–1328 (2010).

    Article  CAS  Google Scholar 

  26. Ge, B. et al. TAB1β (transforming growth factor-β-activated protein kinase 1-binding protein 1β), a novel splicing variant of TAB1 that interacts with p38α but not TAK1. J. Biol. Chem. 278, 2286–2293 (2003).

    Article  CAS  Google Scholar 

  27. Zhou, H. et al. Determinants that control the specific interactions between TAB1 and p38α. Mol. Cell. Biol. 26, 3824–3834 (2006).

    Article  CAS  Google Scholar 

  28. Rothweiler, U. et al. p38α MAP kinase dimers with swapped activation segments and a novel catalytic loop conformation. J. Mol. Biol. 411, 474–485 (2011).

    Article  CAS  Google Scholar 

  29. Cameron, A.J., Escribano, C., Saurin, A.T., Kostelecky, B. & Parker, P.J. PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nat. Struct. Mol. Biol. 16, 624–630 (2009).

    Article  CAS  Google Scholar 

  30. Blethrow, J., Zhang, C., Shokat, K.M. & Weiss, E.L. Design and use of analog-sensitive protein kinases. Curr. Protoc. Mol. Biol. 66, 18.11 (2004).

    Article  Google Scholar 

  31. Wang, Z. et al. The structure of mitogen-activated protein kinase p38 at 2.1-A resolution. Proc. Natl. Acad. Sci. USA 94, 2327–2332 (1997).

    Article  CAS  Google Scholar 

  32. Kornev, A.P., Taylor, S.S. & Ten Eyck, L.F. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. USA 105, 14377–14382 (2008).

    Article  CAS  Google Scholar 

  33. Bhattacharyya, R.P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006).

    Article  CAS  Google Scholar 

  34. Wang, Y. et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen activated protein kinase family. J. Biol. Chem. 273, 2161–2168 (1998).

    Article  CAS  Google Scholar 

  35. Bukhtiyarova, M. et al. Improved expression, purification, and crystallization of p38α MAP kinase. Protein Expr. Purif. 37, 154–161 (2004).

    Article  CAS  Google Scholar 

  36. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  37. Johnson, B.A. & Blevins, R.A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  38. Bartels, C., Xia, T.H., Billeter, M., Guntert, P. & Wuthrich, K. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  Google Scholar 

  39. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  40. Palmer, A.G. III, Fairbrother, W.J., Cavanagh, J., Wright, P.E. & Rance, M. Improved resolution in three-dimensional constant-time triple resonance NMR spectroscopy of proteins. J. Biomol. NMR 2, 103–108 (1992).

    Article  CAS  Google Scholar 

  41. Schleucher, J. et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301–306 (1994).

    Article  CAS  Google Scholar 

  42. Foster, M.P., McElroy, C.A. & Amero, C.D. Solution NMR of large molecules and assemblies. Biochemistry 46, 331–340 (2007).

    Article  CAS  Google Scholar 

  43. Martino, L. et al. Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein. Nucleic Acids Res. 40, 1381–1394 (2012).

    Article  CAS  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  45. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  46. Koeberle, S.C. et al. Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat. Chem. Biol. 8, 141–143 (2012).

    Article  CAS  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  49. Bellahcene, M. et al. Activation of p38 mitogen-activated protein kinase contributes to the early cardiodepressant action of tumor necrosis factor. J. Am. Coll. Cardiol. 48, 545–555 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by project grants from the UK Medical Research Council (MRC) (G0802033 to M.S.M., G1001138 to M.S.M. and M.R.C. and J007501 to M.S.M.) and the UK Department of Health through the National Institute for Health Research comprehensive Biomedical Research Centre award to Guy's & St Thomas' National Health Service Foundation Trust. All the ITC and part of the NMR experiments were performed at the facilities of the Centre for Biomolecular Spectroscopy, King's College London, established with a Capital Award from the Wellcome Trust to M.R.C. (085944/Z/08/Z). S.K. is grateful for support from the Structural Genomics Consortium, a registered charity (number 1097737) that receives funds from AbbVie, Boehringer Ingelheim, the Canada Foundation for Innovation, the Canadian Institutes for Health Research, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda and the Wellcome Trust (092809/Z/10/Z). A.C. is supported by the European Union FP7 grant no. 278568 “PRIMES”. We thank the scientists at the Diamond Light Source for help with data collection. We are grateful to the MRC Biomedical NMR Centre, Mill Hill, and its staff for a generous allocation of NMR time and for expert technical assistance. We also thank N. Drinkwater and B. Sutton for help at an early stage of the work. We thank Y. Wang (David Geffen School of Medicine, University of California, Los Angeles) for the pET14b vector.

Author information

Authors and Affiliations

Authors

Contributions

M.S.M. and M.R.C. conceived of the project; G.F.D.N. and R.B. performed protein cloning, expression and purification; G.F.D.N. performed ITC and NMR experiments; A.C., G.F.D.N. and S.K. performed the X-ray diffraction and structural determination; E.D.M. and S.V. performed the in vitro kinase and E. coli kinase biochemical characterizations; R.B. performed mammalian cell-culture experiments; J.C. and P.S. performed the mouse heart perfusions; and M.S.M., M.R.C., S.K., A.C. and G.F.D.N. wrote the paper. L.M. helped with ITC, R.T. with cloning and R.A.A. with NMR.

Corresponding authors

Correspondence to Maria R Conte or Michael S Marber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 2788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Nicola, G., Martin, E., Chaikuad, A. et al. Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1. Nat Struct Mol Biol 20, 1182–1190 (2013). https://doi.org/10.1038/nsmb.2668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing