Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma

Abstract

The microphthalmia-associated transcription factor (MITF) promotes melanocyte differentiation and cell-cycle arrest. Paradoxically, MITF also promotes melanoma survival and proliferation, acting like a lineage survival oncogene. Thus, it is critically important to understand the mechanisms that regulate MITF activity in melanoma cells. SWI/SNF chromatin remodeling enzymes are multiprotein complexes composed of one of two related ATPases, BRG1 or BRM, and 9–12-associated factors (BAFs). We previously determined that BRG1 interacts with MITF to promote melanocyte differentiation. However, it was unclear whether SWI/SNF enzymes regulate the expression of different classes of MITF target genes in melanoma. In this study, we characterized SWI/SNF subunit expression in melanoma cells and observed downregulation of BRG1 or BRM, but not concomitant loss of both ATPases. Re-introduction of BRG1 in BRG1-deficient SK-MEL5 cells enhanced expression of differentiation-specific MITF target genes and resistance to cisplatin. Downregulation of the single ATPase, BRM, in SK-MEL5 cells inhibited expression of both differentiation-specific and pro-proliferative MITF target genes and inhibited tumorigenicity in vitro. Our data suggest that heterogeneous SWI/SNF complexes composed of either the BRG1 or BRM subunit promote expression of distinct and overlapping MITF target genes and that at least one ATPase is required for melanoma tumorigenicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ et al. (2007). Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 6: 577–591.

    Article  CAS  PubMed  Google Scholar 

  • Becker TM, Haferkamp S, Dijkstra MK, Scurr LL, Frausto M, Diefenbach E et al. (2009). The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a. Mol Cancer 8: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caramel J, Medjkane S, Quignon F, Delattre O . (2008). The requirement for SNF5/INI1 in adipocyte differentiation highlights new features of malignant rhabdoid tumors. Oncogene 27: 2035–2044.

    Article  CAS  PubMed  Google Scholar 

  • Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L et al. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433: 764–769.

    Article  CAS  PubMed  Google Scholar 

  • Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20: 3426–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreira S, Liu B, Goding CR . (2000). The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J Biol Chem 275: 21920–21927.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Archer TK . (2005). Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25: 9016–9027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F et al. (2006). Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci USA 103: 9903–9907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaverini C, Beuret L, Flori E, Busca R, Abbe P, Bille K et al. (2008). Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J Biol Chem 283: 12635–12642.

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Pak BJ, Bani MR, Kapoor M, Lu SJ, Tamir A et al. (2000). Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene 19: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • de La Serna IL, Carlson KA, Hill DA, Guidi CJ, Stephenson RO, Sif S et al. (2000). Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol Cell Biol 20: 2839–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag CS, Tapscott SJ et al. (2005). MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25: 3997–4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Serna IL, Ohkawa Y, Higashi C, Dutta C, Osias J, Kommajosyula N et al. (2006a). The microphthalmia-associated transcription factor (MITF) requires SWI/SNF enzymes to activate melanocyte specific genes. J Biol Chem 281: 20233–20241.

    Article  CAS  PubMed  Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN . (2006b). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7: 461–473.

    Article  CAS  PubMed  Google Scholar 

  • de la Serna IL, Roy K, Carlson KA, Imbalzano AN . (2001). MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J Biol Chem 276: 41486–41491.

    Article  CAS  PubMed  Google Scholar 

  • Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE . (2001). Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol 186: 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE et al. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Dynek JN, Chan SM, Liu J, Zha J, Fairbrother WJ, Vucic D . (2008). Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res 68: 3124–3132.

    Article  CAS  PubMed  Google Scholar 

  • Eberle J, Garbe C, Wang N, Orfanos CE . (1995). Incomplete expression of the tyrosinase gene family (tyrosinase, TRP-1, and TRP-2) in human malignant melanoma cells in vitro. Pigment Cell Res 8: 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Flowers S, Nagl Jr NG, Beck Jr GR, Moran E . (2009). Antagonistic roles for BRM and BRG1 SWI/SNF complexes in differentiation. J Biol Chem 284: 10067–10075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A et al. (2004). Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res 10: 4314–4324.

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Sellers WR . (2006). Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Gartel AL, Tyner AL . (1999). Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246: 280–289.

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Fahy D, Liu H, Wang W, Smerdon MJ . (2008). Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle 7: 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Fahy D, Smerdon MJ . (2006). Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat Struct Mol Biol 13: 902–907.

    Article  CAS  PubMed  Google Scholar 

  • Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA et al. (1994). microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 8: 2770–2780.

    Article  CAS  PubMed  Google Scholar 

  • Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A et al. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64: 5270–5282.

    Article  CAS  PubMed  Google Scholar 

  • Kadam S, McAlpine GS, Phelan ML, Kingston RE, Jones KA, Emerson BM . (2000). Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev 14: 2441–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Cui K, Zhao K . (2004). BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 24: 1188–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy C, Khaled M, Fisher DE . (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12: 406–414.

    Article  CAS  PubMed  Google Scholar 

  • Link KA, Balasubramaniam S, Sharma A, Comstock CE, Godoy-Tundidor S, Powers N et al. (2008). Targeting the BAF57 SWI/SNF subunit in prostate cancer: a novel platform to control androgen receptor activity. Cancer Res 68: 4551–4558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link KA, Burd CJ, Williams E, Marshall T, Rosson G, Henry E et al. (2005). BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF. Mol Cell Biol 25: 2200–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loercher AE, Tank EM, Delston RB, Harbour JW . (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168: 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida Y, Murai K, Miyake K, Iijima S . (2001). Expression of chromatin remodeling factors during neural differentiation. J Biochem (Tokyo) 129: 43–49.

    Article  CAS  Google Scholar 

  • McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK et al. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109: 707–718.

    Article  CAS  PubMed  Google Scholar 

  • Nagl Jr NG, Wang X, Patsialou A, Van Scoy M, Moran E . (2007). Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J 26: 752–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pak BJ, Li Q, Kerbel RS, Ben-David Y . (2000). TYRP2-mediated resistance to cis-diamminedichloroplatinum (II) in human melanoma cells is independent of tyrosinase and TYRP1 expression and melanin content. Melanoma Res 10: 499–505.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park EJ, Hur SK, Kim S, Kwon J . (2009). Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst) 8: 29–39.

    Article  CAS  Google Scholar 

  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 25: 3986–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack MS, Heagney SD, Livingston PO, Fogh J . (1981). HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines. J Natl Cancer Inst 66: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Carrozzi VR, Nazarian AA, Li CC, Gore SL, Sridharan R, Imbalzano AN et al. (2006). Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev 20: 282–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . (2003). Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63: 560–566.

    CAS  PubMed  Google Scholar 

  • Rosson GB, Bartlett C, Reed W, Weissman BE . (2005). BRG1 loss in MiaPaCa2 cells induces an altered cellular morphology and disruption in the organization of the actin cytoskeleton. J Cell Physiol 205: 286–294.

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Kondo Y, Ahmed S, Boumber Y, Konishi K, Guo Y et al. (2007). Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. Cancer Res 67: 11335–11343.

    Article  CAS  PubMed  Google Scholar 

  • Sif S . (2004). ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin. J Cell Biochem 91: 1087–1098.

    Article  CAS  PubMed  Google Scholar 

  • Svensson SP, Lindgren S, Powell W, Green H . (2003). Melanin inhibits cytotoxic effects of doxorubicin and daunorubicin in MOLT 4 cells. Pigment Cell Res 16: 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Vink J, Thomas L, Etoh T, Bruijn JA, Mihm Jr MC, Gattoni-Celli S et al. (1993). Role of beta-1 integrins in organ specific adhesion of melanoma cells in vitro. Lab Invest 68: 192–203.

    CAS  PubMed  Google Scholar 

  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132: 363–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Baiocchi RA, Pal S, Mosialos G, Caligiuri M, Sif S . (2005). The BRG1- and hBRM-associated factor BAF57 induces apoptosis by stimulating expression of the cylindromatosis tumor suppressor gene. Mol Cell Biol 25: 7953–7965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang J, Chen X . (2007). The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem 282: 37429–37435.

    Article  CAS  PubMed  Google Scholar 

  • Yamamichi N, Inada K, Ichinose M, Yamamichi-Nishina M, Mizutani T, Watanabe H et al. (2007). Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res 67: 10727–10735.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr David Fisher (Dana Farber) for the MITF antibody, Ruth Halaban (Yale Tissue Culture Facility) for melanocytes and melanoma cells, and Stephen Smale (Howard Hughes Medical Institute, UCLA) for shRNA constructs. ILD was supported by the National Institute of Environmental Health Sciences; Grant number: 5K22ES12981, Ohio Cancer Research Associates, American Cancer Society, Ohio Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I L de la Serna.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keenen, B., Qi, H., Saladi, S. et al. Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma. Oncogene 29, 81–92 (2010). https://doi.org/10.1038/onc.2009.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.304

Keywords

This article is cited by

Search

Quick links