Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RalA suppresses early stages of Ras-induced squamous cell carcinoma progression

Abstract

Ras proteins activate Raf and PI-3 kinases, as well as exchange factors for RalA and RalB GTPases. Many previous studies have reported that the Ral-signaling cascade contributes positively to Ras-mediated oncogenesis. Here, using a bioengineered tissue model of early steps in Ras-induced human squamous cell carcinoma of the skin, we found the opposite. Conversion of Ras-expressing keratinocytes from a premalignant to malignant state induced by decreasing E-cadherin function was associated with and required an approximately two to threefold decrease in RalA expression. Moreover, direct knockdown of RalA to a similar degree by shRNA expression in these cells reduced E-cadherin levels and also induced progression to a malignant phenotype. Knockdown of the Ral effector, Exo84, mimicked the effects of decreasing RalA levels in these engineered tissues. These phenomena can be explained by our finding that the stability of E-cadherin in Ras-expressing keratinocytes depends upon this RalA signaling cascade. These results imply that an important component of the early stages in squamous carcinoma progression may be a modest decrease in RalA gene expression that magnifies the effects of decreased E-cadherin expression by promoting its degradation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 8
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bailleul B, Surani MA, White S, Barton SC, Brown K, Blessing M et al. (1990). Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62: 697–708.

    Article  CAS  Google Scholar 

  • Bodemann BO, White MA . (2008). Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer 8: 133–140.

    Article  CAS  Google Scholar 

  • Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ . (2001). The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem 276: 29792–29797.

    Article  CAS  Google Scholar 

  • Cantor S, Urano T, Feig LA . (1995). Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 15: 4578–4584.

    Article  CAS  Google Scholar 

  • Carlson MW, Alt-Holland A, Egles C, Garlick JA . (2008). Three-dimensional tissue models of normal and diseased skin. Curr Protoc Cell Biol Chapter 19, Unit 19.9.

  • Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M et al. (2008). Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 27: 2375–2387.

    Article  CAS  Google Scholar 

  • Chen XW, Inoue M, Hsu SC, Saltiel AR . (2006). RalA-exocyst-dependent recycling endosome trafficking is required for the completion of cytokinesis. J Biol Chem 281: 38609–38616.

    Article  CAS  Google Scholar 

  • Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL et al. (2006). RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127: 157–170.

    Article  CAS  Google Scholar 

  • Chien Y, White MA . (2003). RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4: 800–806.

    Article  CAS  Google Scholar 

  • Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. (2003). NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421: 639–643.

    Article  CAS  Google Scholar 

  • Dlugosz A, Merlino G, Yuspa SH . (2002). Progress in cutaneous cancer research. J Investig Dermatol Symp Proc 7: 17–26.

    Article  Google Scholar 

  • Feig LA . (2003). Ral-GTPases: approaching their 15 min of fame. Trends Cell Biol 13: 419–425.

    Article  CAS  Google Scholar 

  • Fenwick R, Prasannan S, Campbell L, Nietlispach D, Evetts K, Camonis J et al. (2009). Solution structure and dynamics of the small GTPase RalB in its active conformation: significance for effector protein binding. Biochemistry e-pub ahead of print 23 January.

  • Frankel P, Aronheim A, Kavanagh E, Balda MS, Matter K, Bunney TD et al. (2005). RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. EMBO J 24: 54–62.

    Article  CAS  Google Scholar 

  • Garlick JA . (2007). Engineering skin to study human disease--tissue models for cancer biology and wound repair. Adv Biochem Eng Biotechnol 103: 207–239.

    PubMed  Google Scholar 

  • Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE et al. (2004). Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res 64: 55–63.

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ . (2005). RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7: 219–226.

    Article  CAS  Google Scholar 

  • Greenberg S, Margulis A, Garlick JA . (2005). in vivo transplantation of engineered human skin. Methods Mol Biol 289: 425–430.

    PubMed  Google Scholar 

  • Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT et al. (2002). Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 16: 2045–2057.

    Article  CAS  Google Scholar 

  • Hao Y, Wong R, Feig LA . (2008). RalGDS couples growth factor signaling to Akt activation. Mol Cell Biol 28: 2851–2859.

    Article  CAS  Google Scholar 

  • Hsu SC, TerBush D, Abraham M, Guo W . (2004). The exocyst complex in polarized exocytosis. Int Rev Cytol 233: 243–265.

    Article  CAS  Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS . (2008). Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27: 6920–6929.

    Article  CAS  Google Scholar 

  • Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R et al. (1995). Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem 270: 22473–22477.

    Article  CAS  Google Scholar 

  • Kudo Y, Kitajjma S, Sato S, Miyauchi M, Ogawa I, Takata T . (2003). Establishment of an oral squamous cell carcinoma cell line with high invasive and p27 degradation activities from a lymph node metastasis. Oral Oncol 39: 515–520.

    Article  CAS  Google Scholar 

  • Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD et al. (2005). Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7: 533–545.

    Article  CAS  Google Scholar 

  • Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ et al. (2006). Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16: 2385–2394.

    Article  CAS  Google Scholar 

  • Margulis A, Zhang W, Alt-Holland A, Crawford HC, Fusenig NE, Garlick JA . (2005a). E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Res 65: 1783–1791.

    Article  CAS  Google Scholar 

  • Margulis A, Zhang W, Garlick JA . (2005b). in vitro fabrication of engineered human skin. Methods Mol Biol 289: 61–70.

    PubMed  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA . (2002). The exocyst is a Ral effector complex. Nat Cell Biol 4: 66–72.

    Article  CAS  Google Scholar 

  • Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L et al. (2003). Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 278: 51743–51748.

    Article  CAS  Google Scholar 

  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68: 3645–3654.

    Article  CAS  Google Scholar 

  • Oxford G, Owens CR, Titus BJ, Foreman TL, Herlevsen MC, Smith SC et al. (2005). RalA and RalB: antagonistic relatives in cancer cell migration. Cancer Res 65: 7111–7120.

    Article  CAS  Google Scholar 

  • Panner A, Nakamura JL, Parsa AT, Rodriguez-Viciana P, Berger MS, Stokoe D et al. (2006). mTOR-independent translational control of the extrinsic cell death pathway by RalA. Mol Cell Biol 26: 7345–7357.

    Article  CAS  Google Scholar 

  • Pierceall WE, Goldberg LH, Tainsky MA, Mukhopadhyay T, Ananthaswamy HN . (1991). Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol Carcinog 4: 196–202.

    Article  CAS  Google Scholar 

  • Polzin A, Shipitsin M, Goi T, Feig LA, Turner TJ . (2002). Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. Mol Cell Biol 22: 1714–1722.

    Article  CAS  Google Scholar 

  • Pons M, Quintanilla M . (2006). Molecular biology of malignant melanoma and other cutaneous tumors. Clin Transl Oncol 8: 466–474.

    Article  CAS  Google Scholar 

  • Potempa S, Ridley AJ . (1998). Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol Biol Cell 9: 2185–2200.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  Google Scholar 

  • Rosse C, Hatzoglou A, Parrini MC, White MA, Chavrier P, Camonis J . (2006). RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26: 727–734.

    Article  CAS  Google Scholar 

  • Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 129: 969–982.

    Article  CAS  Google Scholar 

  • Shipitsin M, Feig LA . (2004). RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol Cell Biol 24: 5746–5756.

    Article  CAS  Google Scholar 

  • Singhal SS, Yadav S, Singhal J, Zajac E, Awasthi YC, Awasthi S . (2005). Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. Biochem Pharmacol 70: 481–488.

    Article  CAS  Google Scholar 

  • Smith SC, Oxford G, Baras AS, Owens C, Havaleshko D, Brautigan DL et al. (2007). Expression of ral GTPases, their effectors, and activators in human bladder cancer. Clin Cancer Res 13: 3803–3813.

    Article  CAS  Google Scholar 

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y . (2002). The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4: 73–78.

    Article  CAS  Google Scholar 

  • Sugita S . (2008). Mechanisms of exocytosis. Acta Physiol (Oxf) 192: 185–193.

    Article  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T . (2001). Small GTP-binding proteins. Physiol Rev 81: 153–208.

    Article  CAS  Google Scholar 

  • Zhu AJ, Watt FM . (1996). Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. J Cell Sci 109 (Part 13): 3013–3023.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank MW Carlson, Y Szwec-Levin, S Ezell, T DesRochers and S Dong for excellent technical assistance. This work was supported by grants to LAF from NIGMS and to JAG from NIDCR. We thank N Fusenig for HaCaT cells and their derivatives and F Watt for the H-2Kd-Ecad vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Feig.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sowalsky, A., Alt-Holland, A., Shamis, Y. et al. RalA suppresses early stages of Ras-induced squamous cell carcinoma progression. Oncogene 29, 45–55 (2010). https://doi.org/10.1038/onc.2009.307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.307

Keywords

This article is cited by

Search

Quick links