Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway

Subjects

Abstract

Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the culprit behind the human disease Kaposi sarcoma (KS), an AIDS-defining malignancy. KSHV encodes a viral G-protein-coupled receptor (vGPCR) critical for the initiation and progression of KS. In this study, we identified that YAP/TAZ, two homologous oncoproteins inhibited by the Hippo tumor suppressor pathway, are activated in KSHV-infected cells in vitro, KS-like mouse tumors and clinical human KS specimens. The KSHV-encoded vGPCR acts through Gq/11 and G12/13 to inhibit the Hippo pathway kinases Lats1/2, promoting the activation of YAP/TAZ. Furthermore, depletion of YAP/TAZ blocks vGPCR-induced cell proliferation and tumorigenesis in a xenograft mouse model. The vGPCR-transformed cells are sensitive to pharmacologic inhibition of YAP. Our study establishes a pivotal role of the Hippo pathway in mediating the oncogenic activity of KSHV and development of KS, and also suggests a potential of using YAP inhibitors for KS intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wen KW, Damania B . Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer Lett 2010; 289: 140–150.

    Article  CAS  Google Scholar 

  2. Flore O, Rafii S, Ely S, O'Leary JJ, Hyjek EM, Cesarman E . Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 1998; 394: 588–592.

    Article  CAS  Google Scholar 

  3. Hermans P . Kaposi's sarcoma in HIV-infected patients: treatment options. HIV Med 2000; 1: 137–142.

    Article  CAS  Google Scholar 

  4. Mesri EA, Cesarman E, Boshoff C . Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 2010; 10: 707–719.

    Article  CAS  Google Scholar 

  5. Ganem D . KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 2006; 1: 273–296.

    Article  CAS  Google Scholar 

  6. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  Google Scholar 

  7. Ledergerber B, Egger M, Erard V, Weber R, Hirschel B, Furrer H et al. AIDS-related opportunistic illnesses occurring after initiation of potent antiretroviral therapy: the Swiss HIV Cohort Study. JAMA 1999; 282: 2220–2226.

    Article  CAS  Google Scholar 

  8. Ganem D . KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 2010; 120: 939–949.

    Article  CAS  Google Scholar 

  9. Edelman DC . Human herpesvirus 8—a novel human pathogen. Virol J 2005; 2: 78.

    Article  Google Scholar 

  10. Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003; 3: 23–36.

    Article  CAS  Google Scholar 

  11. Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM et al. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma. Cancer Cell 2007; 11: 245–258.

    Article  CAS  Google Scholar 

  12. Gershengorn MC, Geras-Raaka E, Varma A, Clark-Lewis I . Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest 1998; 102: 1469–1472.

    Article  CAS  Google Scholar 

  13. Montaner S, Kufareva I, Abagyan R, Gutkind JS . Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 2013; 53: 331–354.

    Article  CAS  Google Scholar 

  14. Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M . Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 2003; 77: 2631–2639.

    Article  CAS  Google Scholar 

  15. Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 2000; 191: 445–454.

    Article  CAS  Google Scholar 

  16. Cavallin LE, Goldschmidt-Clermont P, Mesri EA . Molecular and cellular mechanisms of KSHV oncogenesis of Kaposi's sarcoma associated with HIV/AIDS. PLoS Pathogen 2014; 10: e1004154.

    Article  Google Scholar 

  17. Pan D . Hippo signaling in organ size control. Genes Dev 2007; 21: 886–897.

    Article  CAS  Google Scholar 

  18. Zhao B, Li L, Lei Q, Guan KL . The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24: 862–874.

    Article  CAS  Google Scholar 

  19. Harvey KF, Zhang X, Thomas DM . The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.

    Article  CAS  Google Scholar 

  20. Yu FX, Guan KL . The Hippo pathway: regulators and regulations. Genes Dev 2013; 27: 355–371.

    Article  CAS  Google Scholar 

  21. Pan D . The hippo signaling pathway in development and cancer. Dev Cell 2010; 19: 491–505.

    Article  CAS  Google Scholar 

  22. Johnson R, Halder G . The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13: 63–79.

    Article  Google Scholar 

  23. Zhao B, Ye X, Yu J, Li L, Li W, Li S et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22: 1962–1971.

    Article  CAS  Google Scholar 

  24. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J . The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 2008; 14: 377–387.

    Article  CAS  Google Scholar 

  25. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A . SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 2008; 18: 435–441.

    Article  CAS  Google Scholar 

  26. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML . TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 2001; 15: 1229–1241.

    Article  CAS  Google Scholar 

  27. Wu S, Liu Y, Zheng Y, Dong J, Pan D . The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 2008; 14: 388–398.

    Article  CAS  Google Scholar 

  28. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130: 1120–1133.

    Article  CAS  Google Scholar 

  29. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007; 17: 2054–2060.

    Article  CAS  Google Scholar 

  30. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 2012; 109: 2394–2399.

    Article  CAS  Google Scholar 

  31. St JM, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 1999; 21: 182–186.

    Article  Google Scholar 

  32. Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 2008; 68: 2592–2598.

    Article  CAS  Google Scholar 

  33. Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol 2008; 39: 1582–1589.

    Article  CAS  Google Scholar 

  34. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007; 21: 2747–2761.

    Article  CAS  Google Scholar 

  35. Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 2009; 23: 2729–2741.

    Article  CAS  Google Scholar 

  36. Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 2009; 115: 4576–4585.

    Article  CAS  Google Scholar 

  37. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL . A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 2010; 24: 72–85.

    Article  CAS  Google Scholar 

  38. Hao Y, Chun A, Cheung K, Rashidi B, Yang X . Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 2008; 283: 5496–5509.

    Article  CAS  Google Scholar 

  39. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 2010; 285: 37159–37169.

    Article  CAS  Google Scholar 

  40. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH et al. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 2008; 28: 2426–2436.

    Article  CAS  Google Scholar 

  41. Ma Q, Cavallin LE, Leung HJ, Chiozzini C, Goldschmidt-Clermont PJ, Mesri EA . A role for virally induced reactive oxygen species in Kaposi's sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal 2013; 18: 80–90.

    Article  CAS  Google Scholar 

  42. Vieira J, O'Hearn PM . Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology 2004; 325: 225–240.

    Article  CAS  Google Scholar 

  43. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150: 780–791.

    Article  CAS  Google Scholar 

  44. Mo JS, Yu FX, Gong R, Brown JH, Guan KL . Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 2012; 26: 2138–2143.

    Article  CAS  Google Scholar 

  45. Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y et al. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 2013; 27: 1223–1232.

    Article  CAS  Google Scholar 

  46. Kahn HJ, Bailey D, Marks A . Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod Pathol 2002; 15: 434–440.

    Article  Google Scholar 

  47. Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J et al. TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 2007; 27: 6383–6395.

    Article  CAS  Google Scholar 

  48. Feng H, Dong X, Negaard A, Feng P . Kaposi's sarcoma-associated herpesvirus K7 induces viral G protein-coupled receptor degradation and reduces its tumorigenicity. PLoS Pathogen 2008; 4: e1000157.

    Article  Google Scholar 

  49. Chiou CJ, Poole LJ, Kim PS, Ciufo DM, Cannon JS, Ap RC et al. Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol 2002; 76: 3421–3439.

    Article  CAS  Google Scholar 

  50. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26: 1300–1305.

    Article  CAS  Google Scholar 

  51. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W . Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 2011; 286: 7018–7026.

    Article  CAS  Google Scholar 

  52. Ibarrondo J, Joubert D, Dufour MN, Cohen-Solal A, Homburger V, Jard S et al. Close association of the alpha subunits of Gq and G11 G proteins with actin filaments in WRK1 cells: relation to G protein-mediated phospholipase C activation. Proc Natl Acad Sci USA 1995; 92: 8413–8417.

    Article  CAS  Google Scholar 

  53. Riobo NA, Manning DR . Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol Sci 2005; 26: 146–154.

    Article  CAS  Google Scholar 

  54. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL . Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012; 26: 54–68.

    Article  Google Scholar 

  55. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH . The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 2005; 24: 2076–2086.

    Article  CAS  Google Scholar 

  56. Marinissen MJ, Tanos T, Bolos M, de Sagarra MR, Coso OA, Cuadrado A . Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor. J Biol Chem 2006; 281: 11332–11346.

    Article  CAS  Google Scholar 

  57. Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25: 822–830.

    Article  CAS  Google Scholar 

  58. Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, Moore PS et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am J Pathol 2000; 156: 743–749.

    Article  CAS  Google Scholar 

  59. Kaplan LD . Human herpesvirus-8: Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. Hematol Am Soc Hematol Educ Program 2013; 2013: 103–108.

    Article  Google Scholar 

  60. Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN . Epstein–Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 2005; 79: 536–546.

    Article  CAS  Google Scholar 

  61. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474: 179–183.

    Article  CAS  Google Scholar 

  62. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a Trio-regulated Rho GTPase signaling circuitry. Cancer Cell 2014; 25: 831–845.

    Article  CAS  Google Scholar 

  63. Jenner RG, Boshoff C . The molecular pathology of Kaposi's sarcoma-associated herpesvirus. Biochim Biophys Acta 2002; 1602: 1–22.

    CAS  PubMed  Google Scholar 

  64. Martin D, Galisteo R, Molinolo AA, Wetzker R, Hirsch E, Gutkind JS . PI3Kgamma mediates kaposi's sarcoma-associated herpesvirus vGPCR-induced sarcomagenesis. Cancer Cell 2011; 19: 805–813.

    Article  CAS  Google Scholar 

  65. Martin D, Galisteo R, Ji Y, Montaner S, Gutkind JS . An NF-kappaB gene expression signature contributes to Kaposi's sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 2008; 27: 1844–1852.

    Article  CAS  Google Scholar 

  66. Strassburger K, Tiebe M, Pinna F, Breuhahn K, Teleman AA . Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol 2012; 367: 187–196.

    Article  CAS  Google Scholar 

  67. Leung HJ, Duran EM, Kurtoglu M, Andreansky S, Lampidis TJ, Mesri EA . Activation of the unfolded protein response by 2-deoxy-D-glucose inhibits Kaposi's sarcoma-associated herpesvirus replication and gene expression. Antimicrob Agents Chemother 2012; 56: 5794–5803.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank AIDS and Cancer Specimen Resource at the University of California, San Francisco (particularly Ronald Honrada, Andrew Ma and Michael McGrath) for providing the tissue microarrays and carrying out the HHV-8 staining. We also thank Jenna Jewell, Steve Plouffe and Fabian Flores for critical reading of this manuscript, and Drs Dirk Dittmer, Carsten Gram Hansen and Toshiro Moroishi for insightful discussions. EAM and JN would like to thank Santas Rosario and Darlah Lopez Rodriguez for their help with the infection systems. This study was supported by grants from NIH/NCI P30 CA23100, NIAID P30 AI36214, R01CA132809, R01GM51586 (to KLG) and the Chinese Scholarship Council (to GL). EAM and JN were supported by NIH Grants CA136387 and Miami CFAR Grant P30AI073961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-L Guan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Yu, FX., Kim, Y. et al. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34, 3536–3546 (2015). https://doi.org/10.1038/onc.2014.281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.281

This article is cited by

Search

Quick links