Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies

Abstract

Clinical responses to checkpoint inhibitors used for cancer immunotherapy seemingly require the presence of αβT cells that recognize tumour neoantigens, and are therefore primarily restricted to tumours with high mutational load. Approaches that could address this limitation by engineering αβT cells, such as chimeric antigen receptor T (CAR T) cells, are being investigated intensively, but these approaches have other issues, such as a scarcity of appropriate targets for CAR T cells in solid tumours. Consequently, there is renewed interest among translational researchers and commercial partners in the therapeutic use of γδT cells and their receptors. Overall, γδT cells display potent cytotoxicity, which usually does not depend on tumour-associated (neo)antigens, towards a large array of haematological and solid tumours, while preserving normal tissues. However, the precise mechanisms of tumour-specific γδT cells, as well as the mechanisms for self-recognition, remain poorly understood. In this Review, we discuss the challenges and opportunities for the clinical implementation of cancer immunotherapies based on γδT cells and their receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecules involved in mediating the recognition of healthy and cancer cells through a γδTCR.
Fig. 2: γδTCR and co-receptor diversity.
Fig. 3: Potential causes for failures of clinical trials utilizing natural γδT cells.
Fig. 4: Selected therapeutic concepts.

Similar content being viewed by others

References

  1. Chien, Y. H., Meyer, C. & Bonneville, M. Gammadelta T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Silva-Santos, B., Serre, K. & Norell, H. Gammadelta T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Ma, Y. et al. Contribution of IL-17-producing γ δ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donia, M., Ellebaek, E., Andersen, M. H., Straten, P. T. & Svane, I. M. Analysis of Vδ1 T cells in clinical grade melanoma-infiltrating lymphocytes. Oncoimmunology 1, 1297–1304 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, J. et al. Tumor-infiltrating γδT cells predict prognosis and adjuvant chemotherapeutic benefit in patients with gastric cancer. Oncoimmunology 6, e1353858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meraviglia, S. et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology 6, e1347742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015). This is an excellent but also controversial unbiased description of the immunological landscape of tumour-infiltrating lymphocytes that puts γδT cells at the centre of attention. Recommended to be read in combination with Deniger et al.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tosolini, M. et al. Assessment of tumor-infiltrating TCR Vγ9Vδ2 γδ lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6, e1284723 (2017). This article presents a critical view of the impact of tumour-infiltrating γδT cells on clinical outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chitadze, G., Oberg, H. H., Wesch, D. & Kabelitz, D. The ambiguous role of γδ t lymphocytes in antitumor immunity. Trends Immunol. 38, 668–678 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Pizzolato, G. et al. Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδ T lymphocytes. Proc. Natl Acad. Sci. USA 116, 11906–11915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Godder, K. T. et al. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 39, 751–757 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Perko, R. et al. Gamma delta T cell reconstitution is associated with fewer infections and improved event-free survival after hematopoietic stem cell transplantation for pediatric leukemia. Biol. Blood Marrow Transplant. 21, 130–136 (2015).

    Article  PubMed  Google Scholar 

  16. Scheper, W. et al. GammadeltaT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27, 1328–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Couzi, L., Pitard, V., Moreau, J. F., Merville, P. & Dechanet-Merville, J. Direct and indirect effects of cytomegalovirus-induced γδ T cells after kidney transplantation. Front. Immunol. 6, 3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheper, W., Grunder, C., Straetemans, T., Sebestyen, Z. & Kuball, J. Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 28, 1181–1190 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Litjens, N. H. R., van der Wagen, L., Kuball, J. & Kwekkeboom, J. Potential beneficial effects of cytomegalovirus infection after transplantation. Front. Immunol. 9, 389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Handgretinger, R. & Schilbach, K. The potential role of γδ T cells after allogeneic HCT for leukemia. Blood 131, 1063–1072 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Couzi, L. et al. Cytomegalovirus-induced γδ T cells associate with reduced cancer risk after kidney transplantation. J. Am. Soc. Nephrol. 21, 181–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Halary, F. et al. Shared reactivity of Vδ2 γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deniger, D. C., Moyes, J. S. & Cooper, L. J. Clinical applications of γ δ T cells with multivalent immunity. Front. Immunol. 5, 636 (2014). This is a comprehensive review describing multiple failures in clinical trials that have dealt with γδT cells in the past.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eberl, M. et al. Microbial isoprenoid biosynthesis and human γδT cell activation. FEBS Lett. 544, 4–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gu, S., Borowska, M. T., Boughter, C. T. & Adams, E. J. Butyrophilin3A proteins and Vγ9Vδ2 T cell activation. Semin. Cell Dev. Biol. 84, 65–74 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moulin, M. et al. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens. Cell Mol. Life Sci. 74, 4353–4367 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Wilhelm, M. et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Dieli, F. et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poccia, F. et al. Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vγ9Vδ2 T cells. AIDS 23, 555–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bennouna, J. et al. Phase I study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vγ9Vδ2 T lymphocyte agonist in patients with solid tumors. Cancer Immunol. Immunother. 59, 1521–1530 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Meraviglia, S. et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin. Exp. Immunol. 161, 290–297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lang, J. M. et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol. Immunother. 60, 1447–1460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kunzmann, V. et al. Tumor-promoting versus tumor-antagonizing roles of γδ T cells in cancer immunotherapy: results from a prospective phase I/II trial. J. Immunother. 35, 205–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Pressey, J. G. et al. In vivo expansion and activation of γδ T cells as immunotherapy for refractory neuroblastoma: a phase 1 study. Medicine (Baltimore) 95, e4909 (2016).

    Article  CAS  Google Scholar 

  35. Bregeon, D. et al. Synthesis of phosphoantigens: scalable accesses to enantiomers of BrHPP and studies on N-HDMAPP synthesis. Bioorg. Med. Chem. Lett. 22, 5807–5810 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi, H. et al. Safety profile and anti-tumor effects of adoptive immunotherapy using γ-δ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol. Immunother. 56, 469–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bennouna, J. et al. Phase-I study of Innacell γδ, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol. Immunother. 57, 1599–1609 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Abe, Y. et al. Clinical and immunological evaluation of zoledronate-activated Vγ9γδ T-cell-based immunotherapy for patients with multiple myeloma. Exp. Hematol. 37, 956–968 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Nakajima, J. et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells. Eur. J. Cardiothorac. Surg. 37, 1191–1197 (2010).

    Article  PubMed  Google Scholar 

  40. Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. & Tanabe, K. Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol. Immunother. 60, 1075–1084 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Nicol, A. J. et al. Clinical evaluation of autologous γ δ T cell-based immunotherapy for metastatic solid tumours. Br. J. Cancer 105, 778–786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noguchi, A. et al. Zoledronate-activated Vγ9γδ T cell-based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors. Cytotherapy 13, 92–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Sakamoto, M. et al. Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded γδT cells: a phase I clinical study. J. Immunother. 34, 202–211 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Cui, J. et al. Combination of radiofrequency ablation and sequential cellular immunotherapy improves progression-free survival for patients with hepatocellular carcinoma. Int. J. Cancer 134, 342–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Izumi, T. et al. Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor beta-chain and the common γ-chain. Cytotherapy 15, 481–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Wada, I. et al. Intraperitoneal injection of in vitro expanded Vγ9Vδ2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer. Cancer Med. 3, 362–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aoki, T. et al. Adjuvant combination therapy with gemcitabine and autologous γδ T-cell transfer in patients with curatively resected pancreatic cancer. Cytotherapy 19, 473–485 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Lamb, L. S. Jr et al. Increased frequency of TCR γδ+ T cells in disease-free survivors following T cell-depleted, partially mismatched, related donor bone marrow transplantation for leukemia. J. Hematother. 5, 503–509 (1996). This article is the first clinical description of the potential benefit of γδT cells after allogeneic stem cell transplantation.

    Article  PubMed  Google Scholar 

  49. Wilhelm, M. et al. Successful adoptive transfer and in vivo expansion of haploidentical γδ T cells. J. Transl Med. 12, 45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rock, E. P., Sibbald, P. R., Davis, M. M. & Chien, Y. H. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179, 323–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Schild, H. et al. The nature of major histocompatibility complex recognition by γ δ T cells. Cell 76, 29–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Elliott, J. F., Rock, E. P., Patten, P. A., Davis, M. M. & Chien, Y. H. The adult T-cell receptor δ-chain is diverse and distinct from that of fetal thymocytes. Nature 331, 627–631 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Casorati, G., De Libero, G., Lanzavecchia, A. & Migone, N. Molecular analysis of human γ/δ+ clones from thymus and peripheral blood. J. Exp. Med. 170, 1521–1535 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017). This is a comprehensive analysis of the γδT cell repertoire after allogeneic stem cell transplantation.

    Article  CAS  PubMed  Google Scholar 

  55. Sherwood, A. M. et al. Deep sequencing of the human TCRγ and TCRβ repertoires suggests that TCRβ rearranges after αβ and γδ T cell commitment. Sci. Transl Med. 3, 90ra61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dimova, T. et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl Acad. Sci. USA 112, E556–E565 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davey, M. S. et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9 subsets. Nat. Commun. 9, 1760 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fisch, P. et al. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250, 1269–1273 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Grunder, C. et al. Gamma9 and δ2CDR3 domains regulate functional avidity of T cells harboring γ9δ2TCRs. Blood 120, 5153–5162 (2012). This article describes the impacts of different CDR3 domains on the functional avidity of TEGs.

    Article  CAS  PubMed  Google Scholar 

  60. Starick, L. et al. Butyrophilin 3 A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur. J. Immunol. 47, 982–992 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, H., Fang, Z. & Morita, C. T. Vγ2Vδ2 T. cell receptor recognition of prenyl pyrophosphates is dependent on all CDRs. J. Immunol. 184, 6209–6222 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Willcox, C. R., Davey, M. S. & Willcox, B. E. Development and Selection of the Human Vγ9Vδ2(+) T-Cell Repertoire. Front. Immunol. 9, 1501 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pitard, V. et al. Long-term expansion of effector/memory Vδ2-γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008). This article analyses the correlation between cytomegalovirus infection and γδT cell expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dechanet, J. et al. Major expansion of γδ T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J. Infect. Dis. 179, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Dechanet, J. et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Invest 103, 1437–1449 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kallemeijn, M. J. et al. Next-generation sequencing analysis of the human TCRγδ+ T-cell repertoire reveals shifts in vγ- and vδ-usage in memory populations upon aging. Front. Immunol. 9, 448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scheper, W., Sebestyen, Z. & Kuball, J. Cancer immunotherapy using γδt cells: dealing with diversity. Front. Immunol. 5, 601 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carding, S. R. & Egan, P. J. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. McCarthy, N. E. & Eberl, M. Human γδ T-cell control of mucosal immunity and inflammation. Front. Immunol. 9, 985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melandri, D. et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sandrock, I. et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J. Exp. Med. 215, 3006–3018 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Sebestyen, Z. et al. Rhob mediates phosphoantigen recognition by Vγ9Vδ2 T cell receptor. Cell Rep. 15, 1973–1985 (2016). This is the first article to describe the key role of the small GTPase RhoB in regulation of CD277J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gober, H. J. et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197, 163–168 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tanaka, Y. et al. Natural and synthetic non-peptide antigens recognized by human γ δ T cells. Nature 375, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Vantourout, P. et al. Specific requirements for Vγ9Vδ2 T cell stimulation by a natural adenylated phosphoantigen. J. Immunol. 183, 3848–3857 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Ashihara, E. et al. Isopentenyl pyrophosphate secreted from Zoledronate-stimulated myeloma cells, activates the chemotaxis of γδT cells. Biochem. Biophys. Res. Commun. 463, 650–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012). This article emphasizes the key role of CD277 in Vγ9Vδ2 T cell recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boutin, L. & Scotet, E. Towards deciphering the hidden mechanisms that contribute to the antigenic activation process of human Vγ9Vδ2 T cells. Front. Immunol. 9, 828 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gu, S. et al. Phosphoantigen-induced conformational change of butyrophilin 3A1 (BTN3A1) and its implication on Vγ9Vδ2 T cell activation. Proc. Natl Acad. Sci. USA 114, E7311–E7320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peigne, C. M. et al. The juxtamembrane domain of butyrophilin btn3a1 controls phosphoantigen-mediated activation of human Vγ9Vδ2 T cells. J. Immunol. 198, 4228–4234 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen, K. et al. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB J. 31, 4697–4706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rhodes, D. A. et al. Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J. Immunol. 194, 2390–2398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vantourout, P. et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. Proc. Natl Acad. Sci. USA 115, 1039–1044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dai, Y., Chen, H., Mo, C., Cui, L. & He, W. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human γδ T cells to induce innate anti-tumor/virus immunity. J. Biol. Chem. 287, 16812–16819 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mo, C., Dai, Y., Kang, N., Cui, L. & He, W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J. Biol. Chem. 287, 19242–19254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Scotet, E. et al. Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22, 71–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, H. et al. Chaperonin-containing T-complex protein 1 subunit zeta serves as an autoantigen recognized by human Vδ2 γδ T cells in autoimmune diseases. J. Biol. Chem. 291, 19985–19993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vermijlen, D., Gatti, D., Kouzeli, A., Rus, T. & Eberl, M. Gammadelta T cell responses: how many ligands will it take till we know? Semin. Cell Dev. Biol. 84, 75–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Simoes, A. E., Di Lorenzo, B. & Silva-Santos, B. Molecular determinants of target cell recognition by human γδ T cells. Front. Immunol. 9, 929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adams, E. J., Gu, S. & Luoma, A. M. Human γ δ T cells: evolution and ligand recognition. Cell Immunol. 296, 31–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luoma, A. M., Castro, C. D. & Adams, E. J. γδ T cell surveillance via CD1 molecules. Trends Immunol. 35, 613–621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Uldrich, A. P. et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14, 1137–1145 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Luoma, A. M. et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Mangan, B. A. et al. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J. Immunol. 191, 30–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Lepore, M. et al. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. J. Exp. Med. 211, 1363–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roy, S. et al. Molecular analysis of lipid-reactive vδ1 γδ T cells identified by CD1C tetramers. J. Immunol. 196, 1933–1942 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Hayday, A. & Vantourout, P. A long-playing CD about the γδ TCR repertoire. Immunity 39, 994–996 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Willcox, C. R., Mohammed, F. & Willcox, B. E. Resolving the mystery of pyrophosphate antigen presentation. Nat. Immunol. 14, 886–887 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Reeves, S. A., Chavez-Kappel, C., Davis, R., Rosenblum, M. & Israel, M. A. Developmental regulation of annexin II (Lipocortin 2) in human brain and expression in high grade glioma. Cancer Res. 52, 6871–6876 (1992).

    CAS  PubMed  Google Scholar 

  107. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA 114, 3163–3168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Almeida, A. R. et al. Delta one t cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin. Cancer Res. 22, 5795–5804 (2016). This article presents a comprehensive description of the DOT cell concept.

    Article  CAS  PubMed  Google Scholar 

  109. Halary, F. et al. Control of self-reactive cytotoxic T lymphocytes expressing γ δ T cell receptors by natural killer inhibitory receptors. Eur. J. Immunol. 27, 2812–2821 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Couzi, L. et al. Common features of γδ T cells and CD8(+) alphabeta T cells responding to human cytomegalovirus infection in kidney transplant recipients. J. Infect. Dis. 200, 1415–1424 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Trichet, V. et al. Complex interplay of activating and inhibitory signals received by Vγ9Vδ2 T cells revealed by target cell beta2-microglobulin knockdown. J. Immunol. 177, 6129–6136 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Orr, M. T. & Lanier, L. L. Natural killer cell education and tolerance. Cell 142, 847–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human γδ T cells. Sci. Immunol. 3, eaav4036 (2018).

  114. Kierkels, G. et al. Identification of a tumor-specific allo-HLA-restricted γδTCR. Blood Adv. (in the press).

  115. de Witte, M. A., Kierkels, G. J., Straetemans, T., Britten, C. M. & Kuball, J. Orchestrating an immune response against cancer with engineered immune cells expressing alphabetaTCRs, CARs, and innate immune receptors: an immunological and regulatory challenge. Cancer Immunol. Immunother. 64, 893–902 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gibbons, D. L. et al. Neonates harbour highly active γδ T cells with selective impairments in preterm infants. Eur. J. Immunol. 39, 1794–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Ribot, J. C., Ribeiro, S. T., Correia, D. V., Sousa, A. E. & Silva-Santos, B. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J. Immunol. 192, 2237–2243 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Ryan, P. L. et al. Heterogeneous yet stable Vδ2+ T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc. Natl Acad. Sci. USA 113, 14378–14383 (2016). This article analyses the heterogeneity in profiles of Vδ2 + γδT cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Daley, D. et al. Gammadelta T cells support pancreatic oncogenesis by restraining alphabeta T cell activation. Cell 166, 1485–1499 e1415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lo Presti, E., Dieli, F. & Meraviglia, S. Tumor-infiltrating γδ T lymphocytes: pathogenic role, clinical significance, and differential programing in the tumor microenvironment. Front. Immunol. 5, 607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fleming, C., Morrissey, S., Cai, Y. & Yan, J. Gammadelta T cells: unexpected regulators of cancer development and progression. Trends Cancer 3, 561–570 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rei, M. et al. Murine CD27 Vγ6(+) γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl Acad. Sci. USA 111, E3562–E3570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wakita, D. et al. Tumor-infiltrating IL-17-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 40, 1927–1937 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Caccamo, N. et al. Differentiation, phenotype, and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood 118, 129–138 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Patil, R. S. et al. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer 139, 869–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Peng, G. et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Ma, C. et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 189, 5029–5036 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Ye, J. et al. Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res. 73, 6137–6148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ye, J. et al. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol. 190, 2403–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. de Bruin, R. C. G. et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 7, e1375641 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Lamb, L. S. Jr et al. Engineered drug resistant γδ T cells kill glioblastoma cell lines during a chemotherapy challenge: a strategy for combining chemo- and immunotherapy. PLoS ONE 8, e51805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. de Weerdt, I. et al. Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood 132, 2260–2272 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Wistuba-Hamprecht, K. et al. Proportions of blood-borne Vδ1+ and Vδ2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur. J. Cancer 64, 116–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Correia, D. V. et al. Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118, 992–1001 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Di Lorenzo, B. et al. Broad cytotoxic targeting of acute myeloid leukemia by polyclonal δ1 T cells. Cancer Immunol. Res. 7, 552–558 (2019).

    Article  PubMed  Google Scholar 

  139. Capsomidis, A. et al. Chimeric antigen receptor-engineered human γδ T cells: enhanced cytotoxicity with retention of cross presentation. Mol. Ther. 26, 354–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Fisher, J. & Anderson, J. Engineering approaches in human γδ T cells for cancer immunotherapy. Front. Immunol. 9, 1409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human IPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. de Witte, M. A. et al. Early reconstitution of nk and γδ T cells and its implication for the design of post-transplant immunotherapy. Biol. Blood Marrow Transplant. 24, 1152–1162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hartmann, J., Schussler-Lenz, M., Bondanza, A. & Buchholz, C. J. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. 9, 1183–1197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Scheper, W., Grunder, C. & Kuball, J. Multifunctional γδ T cells and their receptors for targeted anticancer immunotherapy. Oncoimmunology 2, e23974 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Marcu-Malina, V. et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive γδT-cell receptor. Blood 118, 50–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Straetemans, T. et al. Untouched GMP-ready purified engineered immune cells to treat cancer. Clin. Cancer Res. 21, 3957–3968 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Bouchie, A., DeFrancesco, L., Sheridan, C. & Webb, S. Nature Biotechnology’s academic spinouts of 2016. Nat. Biotechnol. 35, 322–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Braham, M. V. J. et al. Cellular immunotherapy on primary multiple myeloma expanded in a 3D bone marrow niche model. Oncoimmunology 7, e1434465 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Straetemans, T. et al. GMP-grade manufacturing of T cells engineered to express a defined γδTCR. Front. Immunol. 9, 1062 (2018). This article presents a detailed description of the production of TEGs for clinical use.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Netherlands Trial Register. A phase I study to investigate the safety of TEG001 cell suspension for infusion in patients with relapsed/refractory acute myeloid leukemia, high-risk myelodysplastic syndrome (IPSS-R score > 4,5) or multiple myeloma. NTR https://www.trialregister.nl/trial/6357 (2017).

  151. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bhullar, K. S. et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer 17, 48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tanaka, Y. et al. Synthesis of pyrophosphate-containing compounds that stimulate Vγ2Vδ2 T cells: application to cancer immunotherapy. Med. Chem. 3, 85–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. van de Donk, N. & Usmani, S. Z. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front. Immunol. 9, 2134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McCarthy, N. E. et al. Azathioprine therapy selectively ablates human Vδ2(+) T cells in Crohn’s disease. J Clin. Invest. 125, 3215–3225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Johanna, I. et al. Evaluating in vivo efficacy — toxicity profile of TEG001 in humanized mice xenografts against primary human AML disease and healthy hematopoietic cells. J. Immunother. Cancer 7, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, Z. W. Protective immune responses of major Vγ2Vδ2 T-cell subset in M. tuberculosis infection. Curr.  Opin. Immunol. 42, 105–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Qaqish, A. et al. Adoptive transfer of phosphoantigen-specific γδ T cell subset attenuates mycobacterium tuberculosis infection in nonhuman primates. J. Immunol. 198, 4753–4763 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Manickam, C., Shah, S. V., Nohara, J., Ferrari, G. & Reeves, R. K. Monkeying around: using non-human primate models to study NK cell biology in HIV infections. Front. Immunol. 10, 1124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ledford, H., Else, H. & Warren, M. Cancer immunologists scoop medicine Nobel Prize. Nature 562, 20–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Harly, C., Peigne, C. M. & Scotet, E. Molecules and mechanisms implicated in the peculiar antigenic activation process of human Vγ9Vδ2 T cells. Front. Immunol. 5, 657 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of D. Beringer for the illustrations provided here of chemicals and crystal structures. Funding for this study was provided by grants ZonMW 43400003, VIDI-ZonMW 917.11.337, KWF UU 2013-6426, UU 2014-6790, UU 2015-7601, UU2018-11979 and GADETA to J.K.; UU2017-11393 to Z.S. and J.K.; European Research Council grant CoG_646701 to B.S.S.; and DFG grant FOR 2799-PR727/11-1 to I.P.; as well as by Ligue Contre le Cancer (Equipe labellisée 2017) and SIRIC BRIO grants to J.D.M.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jurgen Kuball.

Ethics declarations

Competing interests

J.D.M. is scientific adviser of American Gene Technologies; B.S.S. is a cofounder of Lymphact SA, a shareholder and scientific adviser of GammaDelta Therapeutics, and an inventor on patents dealing with DOT cells. J.K. is cofounder, shareholder and scientific adviser of GADETA and inventor on multiple patents dealing with gdTCR and their ligands, as well as with isolation techniques for engineered immune cells. Z.S. is an inventor of patents dealing with gdTCR and their ligands. I.P. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Adicet Bio announces the transition of founder, president and chief executive officer Dr. Aya Jakobovits: https://www.prnewswire.com/news-releases/adicet-bio-announces-the-transition-of-founder-president-and-chief-executive-officer-dr-aya-jakobovits-300608616.html

American Gene Technologies: https://www.americangene.com

Boehringer Ingelheim, PureTech to partner on cancer immunotherapies: https://www.genengnews.com/news/boehringer-ingelheim-puretech-to-partner-on-cancer-immunotherapies/

Company profile: PhosphoGam: https://cednc.org/company-profile/PhosphoGam

D&B Hoovers: http://www.hoovers.com/company-information/cs/company-profile.beijing_doing-times_biomedical_technology_coltd.6ed6e0886d9b2ac6.html

Gadeta: https://www.gadeta.nl

GammaCell Biotechnologies: https://www.gammacelltech.com

GammaDelta Therapeutics: https://gammadeltatx.com

ImCheck therapeutics: http://www.imchecktherapeutics.com

Immatics: https://immatics.com/company.html

Incysus Therapeutics: https://www.incysus.com

Lava Therapeutics: https://lavatherapeutics.com

TC BioPharm: http://www.tcbiopharm.com

Glossary

Vγ9Vδ2 T cells

The main circulating human γδT cells, in which their γδ T cell receptor (TCR) heterodimer is built by a TCRγ chain that uses a Vγ9 segment and a TCRδ chain using the variable (V) segment Vδ2. Vγ9Vδ2 T cells display a relatively limited diversity of their individually rearranged TCR sequences, and are therefore regarded as semi-invariant.

Vδ1+ T cells

A subset of human γδT cells in which their T cell receptor (TCR) uses a Vδ1 segment for its TCRδ chain. TCRδ sequences of Vδ1+ T cells are more diverse than those of Vγ9Vδ2 T cells, and the repertoire of Vδ1+ T cells is further expanded by pairing with different TCRγ chains (using Vγ2, 3,4,5,8, and non-invariant Vγ9 segments). Vδ1+ T cells have been reported to recognize a wide range of cancer cells.

non-Vγ9Vδ2 γδT cells

All human γδT cells except Vγ9Vδ2 γδT cells, including TCRδ chain 1 or 3 to 8, and any Vγ chains (Vγ2, 3, 4, 5, 8, 9).

Phosphoantigens

Intracellular metabolites of the mevalonate pathway, such as isopentenyl pyrophosphate (IPP), or metabolites derived from the mevalonate-independent 1-deoxy-d-xylulose 5-phosphate (DOXP) pathway in bacteria or parasites. (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) is produced by several bacteria and parasites and is the most powerful stimulant for Vγ9Vδ2 T cells. Also, synthetic phosphoantigens have been reported, such as bromohydrin pyrophosphate (BrHPP) and 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP).

Aminobisphosphonates

Metabolites such as pamidronate or zoledronate that partially block the natural mevalonate pathway after the production of isopentenyl pyrophosphate (IPP), through inhibiting farnesyl pyrophosphate synthase, and thereby increase IPP levels. Aminobisphosphonates have been used in daily clinical practice for decades — for example, in patients with multiple myeloma — to stabilize bone formation, mainly because of their inhibitory effect on osteoclasts.

Natural killer T cells

(NKT cells). Immune cells that share properties of αβT cells and NK cells. The αβTCR of NKT cells expresses the invariant TCR Vα24 chain, characterized by their usage of the Jα18 segment in humans. Most NKT cells recognize through their αβTCR lipids expressed within the context of CD1c or CD1d.

Cytotoxic type 1 phenotype

Ability in αβ and γδ T cells to mediate the killing of target cells through the secretion of granzymes and perforin. Such T cells usually also produce IFNγ and TNF.

Anergy

State of an immune cell, which correlates with loss of function and can also result in deletion, and thus the complete loss of defined γδT cells.

Regulatory γδT cells

(Treg cells). A subpopulation of T cells that modulate the immune system. Until recently regulatory cells have been attributed solely to αβT cells, and they are characterized by the expression of CD4, CD25 and FOXP3, with a subset also producing IL-17. Now it has also been proposed that γδT cells have regulatory properties and that regulatory γδT cells secrete IL-17 and mediate tolerance against cancer cells.

Tolerogeneic profile

Immune cells secreting cytokines that induce tolerance, such as IL-10 and IL-17, or enhance the expression of inhibitory checkpoint molecules in their microenvironment.

Ipilimumab

Monoclonal antibody that activates immune cells by targeting CTLA4.

Cytokine release syndrome

Mild to life-threatening syndrome caused by a rapid release of cytokines after adoptive transfer of CAR T cells or other types of immune therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebestyen, Z., Prinz, I., Déchanet-Merville, J. et al. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 19, 169–184 (2020). https://doi.org/10.1038/s41573-019-0038-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0038-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer