Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus

Abstract

Despite its position as the first-line drug for treatment of type 2 diabetes mellitus, the mechanisms underlying the plasma glucose level-lowering effects of metformin (1,1-dimethylbiguanide) still remain incompletely understood. Metformin is thought to exert its primary antidiabetic action through the suppression of hepatic glucose production. In addition, the discovery that metformin inhibits the mitochondrial respiratory chain complex 1 has placed energy metabolism and activation of AMP-activated protein kinase (AMPK) at the centre of its proposed mechanism of action. However, the role of AMPK has been challenged and might only account for indirect changes in hepatic insulin sensitivity. Various mechanisms involving alterations in cellular energy charge, AMP-mediated inhibition of adenylate cyclase or fructose-1,6-bisphosphatase 1 and modulation of the cellular redox state through direct inhibition of mitochondrial glycerol-3-phosphate dehydrogenase have been proposed for the acute inhibition of gluconeogenesis by metformin. Emerging evidence suggests that metformin could improve obesity-induced meta-inflammation via direct and indirect effects on tissue-resident immune cells in metabolic organs (that is, adipose tissue, the gastrointestinal tract and the liver). Furthermore, the gastrointestinal tract also has a major role in metformin action through modulation of glucose-lowering hormone glucagon-like peptide 1 and the intestinal bile acid pool and alterations in gut microbiota composition.

Key points

  • Metformin is the first-line drug for treatment of type 2 diabetes mellitus, with an excellent safety profile, high efficacy in glycaemic control and clear but incompletely understood cardioprotective benefits.

  • The pleiotropic properties of metformin suggest that the drug acts on multiple tissues through various underlying mechanisms rather than on a single organ via a unifying mode of action.

  • Mitochondrial respiratory chain complex 1 is targeted by metformin and its inhibition is involved in AMP-activated protein kinase-independent regulation of hepatic gluconeogenesis by triggering alterations in cellular energy charge and redox state.

  • Metformin might contribute to improvements in obesity-associated meta-inflammation and tissue-specific insulin sensitivity through direct and indirect effects on various resident immune cells in metabolic organs.

  • The gastrointestinal tract has an important role in the action of metformin, which modulates bile acid recirculation and enhances the secretion of the glucose-lowering gut incretin hormone glucagon-like peptide 1.

  • The gut microbiota is a novel target in the mechanisms of metformin action and is involved in both the therapeutic and adverse effects of the drug.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Action of metformin on mitochondrial respiratory chain complex 1.
Fig. 2: Energy-dependent mechanisms of metformin-induced inhibition of hepatic gluconeogenesis.
Fig. 3: Redox-dependent mechanisms by which metformin inhibits hepatic gluconeogenesis.
Fig. 4: Metformin and meta-inflammation.
Fig. 5: Metformin action in the gut.

Similar content being viewed by others

References

  1. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).

    PubMed  Google Scholar 

  2. Davies, M. J. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61, 2461–2498 (2018).

    PubMed  Google Scholar 

  3. United Kingdom Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

    Google Scholar 

  4. United Kingdom Prospective Diabetes Study (UKPDS) Group. United Kingdom prospective diabetes study 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. United Kingdom Prospective Diabetes Study Group. Ann. Intern. Med. 128, 165–175 (1998).

    Google Scholar 

  5. Maruthur, N. M. et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 164, 740–751 (2016).

    PubMed  Google Scholar 

  6. Palmer, S. C. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA 316, 313–324 (2016).

    CAS  PubMed  Google Scholar 

  7. Sanchez-Rangel, E. & Inzucchi, S. E. Metformin: clinical use in type 2 diabetes. Diabetologia 60, 1586–1593 (2017).

    CAS  PubMed  Google Scholar 

  8. Howlett, H. C. & Bailey, C. J. A risk-benefit assessment of metformin in type 2 diabetes mellitus. Drug Saf. 20, 489–503 (1999).

    CAS  PubMed  Google Scholar 

  9. Bailey, C. J. Metformin: historical overview. Diabetologia 60, 1566–1576 (2017).

    CAS  PubMed  Google Scholar 

  10. Werner, E. & Bell, J. The preparation of methylguanidine, and of ββ-dimethylguanidine by interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J. Am. Chem. Soc. 121, 1790–1794 (1922).

    CAS  Google Scholar 

  11. Nattrass, M. et al. Hyperlactatemia in diabetics with retinopathy during combined sulphonylurea and phenformin therapy. Diabete Metab. 4, 1–4 (1978).

    CAS  PubMed  Google Scholar 

  12. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    CAS  PubMed  Google Scholar 

  13. Hundal, R. S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cusi, K., Consoli, A. & DeFronzo, R. A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 81, 4059–4067 (1996).

    CAS  PubMed  Google Scholar 

  15. Hother-Nielsen, O., Schmitz, O., Andersen, P. H., Beck-Nielsen, H. & Pedersen, O. Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol. 120, 257–265 (1989).

    CAS  PubMed  Google Scholar 

  16. Stumvoll, M., Nurjhan, N., Perriello, G., Dailey, G. & Gerich, J. E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 550–554 (1995).

    CAS  PubMed  Google Scholar 

  17. DeFronzo, R. A., Barzilai, N. & Simonson, D. C. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab. 73, 1294–1301 (1991).

    CAS  PubMed  Google Scholar 

  18. Inzucchi, S. E. et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med. 338, 867–872 (1998).

    CAS  PubMed  Google Scholar 

  19. Bailey, C. J., Mynett, K. J. & Page, T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br. J. Pharmacol. 112, 671–675 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buse, J. B. et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39, 198–205 (2016). This human study provides strong evidence for a gut-mediated mechanism in the blood glucose-lowering action of metformin.

    CAS  PubMed  Google Scholar 

  21. McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. Diabetologia 59, 426–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hardie, D. G. AMPK-sensing energy while talking to other signaling pathways. Cell Metab. 20, 939–952 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao, J. et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 20435–20446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Graham, G. G. et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50, 81–98 (2011).

    CAS  PubMed  Google Scholar 

  26. Tucker, G. T. et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol. 12, 235–246 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilcock, C. & Bailey, C. J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49–57 (1994).

    CAS  PubMed  Google Scholar 

  28. Jensen, J. B. et al. [11C]-Labeled metformin distribution in the liver and small intestine using dynamic positron emission tomography in mice demonstrates tissue-specific transporter dependency. Diabetes 65, 1724–1730 (2016).

    CAS  PubMed  Google Scholar 

  29. Gormsen, L. C. et al. In vivo imaging of human 11C-metformin in peripheral organs: dosimetry, biodistribution, and kinetic analyses. J. Nucl. Med. 57, 1920–1926 (2016).

    CAS  PubMed  Google Scholar 

  30. Liang, X. & Giacomini, K. M. Transporters involved in metformin pharmacokinetics and treatment response. J. Pharm. Sci. 106, 2245–2250 (2017).

    CAS  PubMed  Google Scholar 

  31. Todd, J. N. & Florez, J. C. An update on the pharmacogenomics of metformin: progress, problems and potential. Pharmacogenomics 15, 529–539 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dujic, T. et al. Variants in pharmacokinetic transporters and glycemic response to metformin: a Metgen meta-analysis. Clin. Pharmacol. Ther. 101, 763–772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 48, 1055–1059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ait-Omar, A. et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 60, 2598–2607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jablonski, K. A. et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes 59, 2672–2681 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hollunger, G. Guanidines and oxidative phosphorylations. Acta Pharmacol. Toxicol. 11, 1–84 (1955).

    CAS  Google Scholar 

  37. Schafer, G. Site-specific uncoupling and inhibition of oxidative phosphorylation by biguanides. II. Biochim. Biophys. Acta 172, 334–337 (1969).

    CAS  PubMed  Google Scholar 

  38. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    CAS  PubMed  Google Scholar 

  39. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000). This study together with El-Mir et al. (2000) were the first to report specific inhibition of metformin on the mitochondrial respiratory chain complex 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Degli Esposti, M. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim. Biophys. Acta 1364, 222–235 (1998).

    CAS  PubMed  Google Scholar 

  41. Fontaine, E. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. Front. Endocrinol. 9, 753 (2018).

    Google Scholar 

  42. Vial, G., Detaille, D. & Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol. 10, 294 (2019).

    Google Scholar 

  43. Stephenne, X. et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54, 3101–3110 (2011). The is the first study to show that metformin inhibits mitochondrial respiratory chain complex 1 and activates AMPK in primary human hepatocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Andrzejewski, S., Gravel, S. P., Pollak, M. & St-Pierre, J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2, 12 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014). This elegant study dissects the mechanism by which metformin inhibits the mitochondrial respiratory chain complex 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guigas, B. et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem. J. 382, 877–884 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Zannella, V. E. et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin. Cancer Res. 19, 6741–6750 (2013).

    CAS  PubMed  Google Scholar 

  49. Gui, D. Y. et al. Environment dictates dependence on mitochondrial complex I for NAD+ and aspartate production and determines cancer cell sensitivity to metformin. Cell Metab. 24, 716–727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, G. et al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Res. 76, 3904–3915 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Boukalova, S. et al. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Mol. Cancer Ther. 15, 2875–2886 (2016).

    CAS  PubMed  Google Scholar 

  52. Guo, Z. et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem. Biol. 24, 1314–1275.e6 (2017).

    CAS  PubMed  Google Scholar 

  53. Thakur, S. et al. Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin. Cancer Res. 24, 4030–4043 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fontaine, E. Metformin and respiratory chain complex I: the last piece of the puzzle? Biochem. J. 463, e3–e5 (2014).

    CAS  PubMed  Google Scholar 

  55. Wilcock, C., Wyre, N. D. & Bailey, C. J. Subcellular distribution of metformin in rat liver. J. Pharm. Pharmacol. 43, 442–444 (1991).

    CAS  PubMed  Google Scholar 

  56. Detaille, D. et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54, 2179–2187 (2005). This is the first study demonstrating that metformin can reduce oxidative stress through its mitochondrial action.

    CAS  PubMed  Google Scholar 

  57. Detaille, D., Guigas, B., Leverve, X., Wiernsperger, N. & Devos, P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem. Pharmacol. 63, 1259–1272 (2002).

    CAS  PubMed  Google Scholar 

  58. El-Mir, M. Y. et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J. Mol. Neurosci. 34, 77–87 (2008).

    CAS  PubMed  Google Scholar 

  59. Bridges, H. R., Sirvio, V. A., Agip, A. N. & Hirst, J. Molecular features of biguanides required for targeting of mitochondrial respiratory complex I and activation of AMP-kinase. BMC Biol. 14, 65 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Logie, L. et al. Cellular responses to the metal-binding properties of metformin. Diabetes 61, 1423–1433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013).

    CAS  PubMed  Google Scholar 

  62. Zickermann, V. et al. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44–49 (2015).

    CAS  PubMed  Google Scholar 

  63. Saheki, T. et al. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J. Biol. Chem. 282, 25041–25052 (2007).

    CAS  PubMed  Google Scholar 

  64. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. He, L. & Wondisford, F. E. Metformin action: concentrations matter. Cell Metab. 21, 159–162 (2015).

    CAS  PubMed  Google Scholar 

  66. Christensen, M. M. et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet. Genomics 21, 837–850 (2011).

    CAS  PubMed  Google Scholar 

  67. Lalau, J. D., Lemaire-Hurtel, A. S. & Lacroix, C. Establishment of a database of metformin plasma concentrations and erythrocyte levels in normal and emergency situations. Clin. Drug Investig. 31, 435–438 (2011).

    CAS  PubMed  Google Scholar 

  68. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010). This paper provides genetic evidence of AMPK-independent action of metformin in the inhibition of hepatic glucose production.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013). This paper provides genetic evidence of AMPK-mediated phosphorylation of both ACC1 and ACC2 in metformin regulation of lipid metabolism and insulin sensitivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hunter, R. W. et al. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med. 24, 1395–1406 (2018). This study provides genetic evidence of metformin inhibition of hepatic glucose production through allosteric inhibition of fructose-1-6-bisphosphatase via metformin-induced increases of intracellular AMP levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013). This paper describes the suppression of hepatic glucagon signalling in response to metformin by inhibition of adenylate cyclase via metformin-induced increases of intracellular AMP levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Clarke, J. D. et al. Mechanism of altered metformin distribution in nonalcoholic steatohepatitis. Diabetes 64, 3305–3313 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Scheen, A. J. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 30, 359–371 (1996).

    CAS  PubMed  Google Scholar 

  74. Alshawi, A. & Agius, L. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. J. Biol. Chem. 294, 2839–2853 (2019).

    CAS  PubMed  Google Scholar 

  75. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014). This paper describes a redox-dependent mechanism to account for the inhibition of hepatic gluconeogenesis by metformin.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Al-Oanzi, Z. H. et al. Opposite effects of a glucokinase activator and metformin on glucose-regulated gene expression in hepatocytes. Diabetes Obes. Metab. 19, 1078–1087 (2017).

    CAS  PubMed  Google Scholar 

  77. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001). This is the first paper showing AMPK activation by metformin.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hawley, S. A. et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, C. S. et al. The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526–540 (2014). This study reports an AMP-independent mechanism for glucose sensing by AMPK through the lysosomal pathway.

    CAS  PubMed  Google Scholar 

  80. Li, M. et al. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab. https://doi.org/10.1016/j.cmet.2019.05.018 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Zhang, C. S. et al. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 24, 521–522 (2016).

    PubMed  Google Scholar 

  82. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, J. M. et al. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner. J. Biol. Chem. 285, 32182–32191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Caton, P. W. et al. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J. Endocrinol. 205, 97–106 (2010).

    CAS  PubMed  Google Scholar 

  86. Boudaba, N. et al. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. EBioMedicine 28, 194–209 (2018). This paper provides genetic evidence of AMPK-dependent effects of metformin on lipogenesis inhibition and fatty acid oxidation stimulation.

    PubMed  PubMed Central  Google Scholar 

  87. Cokorinos, E. C. et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147–1159.e10 (2017). This study provides pharmacological and genetic evidence of the blood glucose-lowering effect of AMPK activation in skeletal muscle.

    CAS  PubMed  Google Scholar 

  88. Madiraju, A. K. et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat. Med. 24, 1384–1394 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ringler, R. L. & Singer, T. P. Studies on the mitochondrial alpha-glycerophosphate dehydrogenase. I. Reaction of the dehydrogenase with electron acceptors and the respiratory chain. J. Biol. Chem. 234, 2211–2217 (1959).

    CAS  PubMed  Google Scholar 

  90. Lee, Y. P. & Lardy, H. A. Influence of thyroid hormones on L-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat. J. Biol. Chem. 240, 1427–1436 (1965).

    CAS  PubMed  Google Scholar 

  91. Lin, E. C. Glycerol utilization and its regulation in mammals. Annu. Rev. Biochem. 46, 765–795 (1977).

    CAS  PubMed  Google Scholar 

  92. Brisson, D., Vohl, M. C., St-Pierre, J., Hudson, T. J. & Gaudet, D. Glycerol: a neglected variable in metabolic processes? Bioessays 23, 534–542 (2001).

    CAS  PubMed  Google Scholar 

  93. Baur, J. A. & Birnbaum, M. J. Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab. 20, 197–199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006). This is the first paper describing a small-molecule direct AMPK activator.

    CAS  PubMed  Google Scholar 

  95. Esquejo, R. M. et al. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models. EBioMedicine 31, 122–132 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Mazza, A. et al. The role of metformin in the management of NAFLD. Exp. Diabetes Res. 2012, 716404 (2012).

    PubMed  Google Scholar 

  97. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    CAS  PubMed  Google Scholar 

  98. Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    CAS  PubMed  Google Scholar 

  100. McNelis, J. C. & Olefsky, J. M. Macrophages, immunity, and metabolic disease. Immunity 41, 36–48 (2014).

    CAS  PubMed  Google Scholar 

  101. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).

    CAS  PubMed  Google Scholar 

  103. Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    CAS  PubMed  Google Scholar 

  104. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ricardo-Gonzalez, R. R. et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc. Natl Acad. Sci. USA 107, 22617–22622 (2010).

    CAS  PubMed  Google Scholar 

  109. Stanya, K. J. et al. Direct control of hepatic glucose production by interleukin-13 in mice. J. Clin. Invest. 123, 261–271 (2013).

    CAS  PubMed  Google Scholar 

  110. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010).

    CAS  PubMed  Google Scholar 

  112. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Evia-Viscarra, M. L. et al. The effects of metformin on inflammatory mediators in obese adolescents with insulin resistance: controlled randomized clinical trial. J. Pediatr. Endocrinol. Metab. 25, 41–49 (2012).

    CAS  PubMed  Google Scholar 

  114. Fidan, E. et al. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol. 48, 297–302 (2011).

    CAS  PubMed  Google Scholar 

  115. Cameron, A. R. et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 119, 652–665 (2016). This study shows some beneficial anti-inflammatory effects of metformin in humans, irrespective of their diabetic status.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu, C. H., Hung, Y. J. & Hsieh, P. S. Additional effect of metformin and celecoxib against lipid dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver. Eur. J. Pharmacol. 789, 60–67 (2016).

    CAS  PubMed  Google Scholar 

  117. Xue, W. et al. Alkannin inhibited hepatic inflammation in diabetic Db/Db mice. Cell. Physiol. Biochem. 45, 2461–2470 (2018).

    CAS  PubMed  Google Scholar 

  118. Shen, C. L. et al. Annatto-extracted tocotrienols improve glucose homeostasis and bone properties in high-fat diet-induced type 2 diabetic mice by decreasing the inflammatory response. Sci. Rep. 8, 11377 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Jing, Y. et al. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol. Cell. Endocrinol. 461, 256–264 (2018).

    CAS  PubMed  Google Scholar 

  120. de Oliveira, S. et al. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol. 70, 710-721(2018).

  121. Kim, J. et al. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J. Biol. Chem. 289, 23246–23255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kelly, B., Tannahill, G. M., Murphy, M. P. & O’Neill, L. A. Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J. Biol. Chem. 290, 20348–20359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).

    CAS  PubMed  Google Scholar 

  124. Vasamsetti, S. B. et al. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64, 2028–2041 (2015). This study shows the inhibition of monocyte-to-macrophage differentiation and atheromatous plaque formation by metformin in ApoE −/− mice through an AMPK–STAT3-dependent mechanism.

    CAS  PubMed  Google Scholar 

  125. Yan, Z. et al. Metformin suppresses UHMWPE particle-induced osteolysis in the mouse calvaria by promoting polarization of macrophages to an anti-inflammatory phenotype. Mol. Med. 24, 20 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Buldak, L. et al. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. Pharmacol. Rep. 66, 418–429 (2014).

    CAS  PubMed  Google Scholar 

  127. Arai, M. et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J. Pharmacol. Exp. Ther. 334, 206–213 (2010).

    CAS  PubMed  Google Scholar 

  128. Stienstra, R., Netea-Maier, R. T., Riksen, N. P., Joosten, L. A. B. & Netea, M. G. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab. 26, 142–156 (2017).

    CAS  PubMed  Google Scholar 

  129. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    CAS  PubMed  Google Scholar 

  130. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Negrotto, L., Farez, M. F. & Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol. 73, 520–528 (2016).

    PubMed  Google Scholar 

  132. Lee, S. Y. et al. Metformin suppresses systemic autoimmunity in Roquin(san/san) mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J. Immunol. 198, 2661–2670 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Lee, S. Y. et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/treg balance. PLOS ONE 10, e0135858 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Eikawa, S. et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl Acad. Sci. USA 112, 1809–1814 (2015).

    CAS  PubMed  Google Scholar 

  136. Kunisada, Y. et al. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine 25, 154–164 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Li, L. et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 78, 1779–1791 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pereira, F. V. et al. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget 9, 25808–25825 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Natali, A. & Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49, 434–441 (2006).

    CAS  PubMed  Google Scholar 

  140. Wu, T., Horowitz, M. & Rayner, C. K. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev. Gastroenterol. Hepatol. 11, 157–166 (2017).

    CAS  PubMed  Google Scholar 

  141. Bonora, E. et al. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr. Med. Res. Opin. 9, 47–51 (1984).

    CAS  PubMed  Google Scholar 

  142. Stepensky, D., Friedman, M., Raz, I. & Hoffman, A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab. Dispos. 30, 861–868 (2002).

    CAS  PubMed  Google Scholar 

  143. Sum, C. F. et al. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet. Med. 9, 61–65 (1992).

    CAS  PubMed  Google Scholar 

  144. Koffert, J. P. et al. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: results from a randomized clinical trial. Diabetes Res. Clin. Pract. 131, 208–216 (2017).

    CAS  PubMed  Google Scholar 

  145. Wu, T. et al. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes. Metab. 19, 290–293 (2017).

    CAS  PubMed  Google Scholar 

  146. Bailey, C. J., Wilcock, C. & Day, C. Effect of metformin on glucose metabolism in the splanchnic bed. Br. J. Pharmacol. 105, 1009–1013 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Penicaud, L., Hitier, Y., Ferre, P. & Girard, J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem. J. 262, 881–885 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gontier, E. et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur. J. Nucl. Med. Mol. Imaging 35, 95–99 (2008).

    CAS  PubMed  Google Scholar 

  149. Ikeda, T., Iwata, K. & Murakami, H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem. Pharmacol. 59, 887–890 (2000).

    CAS  PubMed  Google Scholar 

  150. Sakar, Y. et al. Metformin-induced regulation of the intestinal D-glucose transporters. J. Physiol. Pharmacol. 61, 301–307 (2010).

    CAS  PubMed  Google Scholar 

  151. Walker, J. et al. 5-Aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochem. J. 385, 485–491 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lenzen, S., Lortz, S. & Tiedge, M. Effect of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats. Biochem. Pharmacol. 51, 893–896 (1996).

    CAS  PubMed  Google Scholar 

  153. Bauer, P. V. et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 27, 101–117.e5 (2018). This study in rodents shows the effect of metformin on upper small intestinal microbiota and glucose sensing.

    CAS  PubMed  Google Scholar 

  154. Bailey, C. J., Wilcock, C. & Scarpello, J. H. Metformin and the intestine. Diabetologia 51, 1552–1553 (2008).

    CAS  PubMed  Google Scholar 

  155. Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015). This paper presents studies in rodent models that show that metformin lowers blood levels of glucose by inhibiting hepatic glucose production through a neuron-mediated gut–brain–liver axis.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Borg, M. J. et al. Comparative effects of proximal and distal small intestinal administration of metformin on plasma glucose and glucagon-like peptide-1, and gastric emptying after oral glucose, in type 2 diabetes. Diabetes Obes. Metab. 21, 640–647 (2019).

    CAS  PubMed  Google Scholar 

  157. Henry, R. R. et al. Improved glycemic control with minimal systemic metformin exposure: effects of metformin delayed-release (metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes. PLOS ONE 13, e0203946 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Oh, J. et al. Inhibition of the multidrug and toxin extrusion (MATE) transporter by pyrimethamine increases the plasma concentration of metformin but does not increase antihyperglycaemic activity in humans. Diabetes Obes. Metab. 18, 104–108 (2016).

    CAS  PubMed  Google Scholar 

  159. Mannucci, E. et al. Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without type 2 diabetes. Diabetes Nutr. Metab. 17, 336–342 (2004).

    CAS  PubMed  Google Scholar 

  160. Napolitano, A. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLOS ONE 9, e100778 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. Maida, A., Lamont, B. J., Cao, X. & Drucker, D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 54, 339–349 (2011).

    CAS  PubMed  Google Scholar 

  162. DeFronzo, R. A. et al. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia 59, 1645–1654 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Bahne, E. et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight 3, 93936 (2018). This paper presents human studies that analyse the role of GLP1 release in the glucose-lowering effect of metformin.

    PubMed  Google Scholar 

  164. Li, M. et al. Efficacy and safety of liraglutide versus sitagliptin both in combination with metformin in patients with type 2 diabetes: a systematic review and meta-analysis. Medicine 96, e8161 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bahne, E. et al. Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin. Diabetes Obes. Metab. 18, 955–961 (2016).

    CAS  PubMed  Google Scholar 

  166. Mulherin, A. J. et al. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 152, 4610–4619 (2011).

    CAS  PubMed  Google Scholar 

  167. Kim, M. H. et al. Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J. Endocrinol. 220, 117–128 (2014).

    CAS  PubMed  Google Scholar 

  168. Kappe, C., Patrone, C., Holst, J. J., Zhang, Q. & Sjoholm, A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J. Gastroenterol. 48, 322–332 (2013).

    CAS  PubMed  Google Scholar 

  169. Bronden, A. et al. Single-dose metformin enhances bile acid-induced glucagon-like peptide-1 secretion in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 102, 4153–4162 (2017).

    PubMed  Google Scholar 

  170. Carter, D., Howlett, H. C., Wiernsperger, N. F. & Bailey, C. J. Differential effects of metformin on bile salt absorption from the jejunum and ileum. Diabetes Obes. Metab. 5, 120–125 (2003).

    CAS  PubMed  Google Scholar 

  171. Lien, F. et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J. Clin. Invest. 124, 1037–1051 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Hansen, M. et al. Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion. Diabetes Obes. Metab. 18, 571–580 (2016).

    CAS  PubMed  Google Scholar 

  173. Wu, T. et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes. Metab. 15, 474–477 (2013).

    CAS  PubMed  Google Scholar 

  174. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Trabelsi, M. S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015).

    PubMed  PubMed Central  Google Scholar 

  176. Duca, F. A., Bauer, P. V., Hamr, S. C. & Lam, T. K. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab. 22, 367–380 (2015).

    CAS  PubMed  Google Scholar 

  177. Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).

    PubMed  Google Scholar 

  178. Kuhre, R. E., Frost, C. R., Svendsen, B. & Holst, J. J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64, 370–382 (2015).

    CAS  PubMed  Google Scholar 

  179. Parker, H. E. et al. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55, 2445–2455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cote, C. D. et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat. Med. 21, 498–505 (2015).

    CAS  PubMed  Google Scholar 

  182. Waise, T. M. Z. et al. Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. Nat. Commun. 10, 714 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    CAS  PubMed  Google Scholar 

  184. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  185. Lee, H. & Ko, G. Effect of metformin on metabolic improvement and gut microbiota. Appl. Environ. Microbiol. 80, 5935–5943 (2014).

    PubMed  PubMed Central  Google Scholar 

  186. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014). These rodent studies show that metformin induces a profound shift in the faecal microbial community profile in HFD-fed mice, with higher abundance of the mucin-degrading bacterium Akkermansia accompanied by an increase in the number of mucin-producing goblet cells and adipose tissue-resident regulatory T cells.

    CAS  PubMed  Google Scholar 

  187. Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 5, 14405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. de la Cuesta-Zuluaga, J. et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40, 54–62 (2017). These studies in humans show that metformin shifts gut microbiota composition through enrichment of SCFA-producing and mucin-degrading bacteria.

    PubMed  Google Scholar 

  189. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). This study in humans shows that altered gut microbiota mediates some of metformin’s antidiabetic effects in treatment-naive patients with type 2 diabetes mellitus.

    CAS  PubMed  Google Scholar 

  190. Tong, X. et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional chinese herbal formula: a multicenter, randomized, open label clinical trial. mBio. 9, e02392-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. Rosario, D. et al. Understanding the representative gut microbiota dysbiosis in metformin-treated type 2 diabetes patients using genome-scale metabolic modeling. Front. Physiol. 9, 775 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  193. Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

    CAS  PubMed  Google Scholar 

  194. Cani, P. D. et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90, 1236–1243 (2009).

    CAS  PubMed  Google Scholar 

  195. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    CAS  PubMed  Google Scholar 

  196. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS  PubMed  Google Scholar 

  197. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    CAS  PubMed  Google Scholar 

  198. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    CAS  PubMed  Google Scholar 

  199. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    CAS  PubMed  Google Scholar 

  200. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Vashisht, R. & Brahmachari, S. K. Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J. Transl. Med. 13, 83 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 26, 110–130 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Weisman, A., Bai, J. W., Cardinez, M., Kramer, C. K. & Perkins, B. A. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 5, 501–512 (2017).

    CAS  PubMed  Google Scholar 

  207. Wood, J. R. et al. Most youth with type 1 diabetes in the T1D Exchange Clinic Registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes clinical guidelines. Diabetes Care 36, 2035–2037 (2013).

    PubMed  PubMed Central  Google Scholar 

  208. Petrie, J. R. et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 5, 597–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Meng, H. et al. Effect of metformin on glycaemic control in patients with type 1 diabetes: a meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev. 34, e2983 (2018).

    PubMed  Google Scholar 

  210. Lund, S. S. et al. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study. PLOS ONE 3, e3363 (2008).

    PubMed  PubMed Central  Google Scholar 

  211. Scheen, A. J. Will delayed release metformin provide better management of diabetes type 2? Expert Opin. Pharmacother. 17, 627–630 (2016).

    PubMed  Google Scholar 

  212. Fujita, Y. & Inagaki, N. Metformin: new preparations and nonglycemic benefits. Curr. Diab. Rep. 17, 5 (2017).

    PubMed  Google Scholar 

  213. Berstein, L. M. Metformin: not only per os. Expert Rev. Endocrinol. Metab. 13, 63–65 (2018).

    CAS  PubMed  Google Scholar 

  214. Cetin, M. & Sahin, S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv. 23, 2796–2805 (2016).

    CAS  PubMed  Google Scholar 

  215. Zhao, Y. et al. Polymetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun. 7, 11822 (2016).

    PubMed  PubMed Central  Google Scholar 

  216. Bouchoucha, M., Uzzan, B. & Cohen, R. Metformin and digestive disorders. Diabetes Metab. 37, 90–96 (2011).

    CAS  PubMed  Google Scholar 

  217. Bonnet, F. & Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes. Metab. 19, 473–481 (2017).

    CAS  PubMed  Google Scholar 

  218. McCreight, L. J. et al. Pharmacokinetics of metformin in patients with gastrointestinal intolerance. Diabetes Obes. Metab. 20, 1593–1601 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Dujic, T. et al. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes 64, 1786–1793 (2015).

    CAS  PubMed  Google Scholar 

  220. Dujic, T., Zhou, K., Tavendale, R., Palmer, C. N. & Pearson, E. R. Effect of serotonin transporter 5-HTTLPR polymorphism on gastrointestinal intolerance to metformin: a GoDARTS study. Diabetes Care 39, 1896–1901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Hoffmann, I. S., Roa, M., Torrico, F. & Cubeddu, L. X. Ondansetron and metformin-induced gastrointestinal side effects. Am. J. Ther. 10, 447–451 (2003).

    PubMed  Google Scholar 

  222. Scarpello, J. H., Hodgson, E. & Howlett, H. C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet. Med. 15, 651–656 (1998).

    CAS  PubMed  Google Scholar 

  223. Elbere, I. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLOS ONE 13, e0204317 (2018).

    PubMed  PubMed Central  Google Scholar 

  224. Greenway, F., Wang, S. & Heiman, M. A novel cobiotic containing a prebiotic and an antioxidant augments the glucose control and gastrointestinal tolerability of metformin: a case report. Benef. Microbes 5, 29–32 (2014).

    CAS  PubMed  Google Scholar 

  225. Burton, J. H. et al. Addition of a gastrointestinal microbiome modulator to metformin improves metformin tolerance and fasting glucose levels. J. Diabetes Sci. Technol. 9, 808–814 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Escobar-Morreale, H. F. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 14, 270–284 (2018).

    PubMed  Google Scholar 

  227. Burt Solorzano, C. M. et al. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 77, 332–337 (2012).

    CAS  PubMed  Google Scholar 

  228. Ovalle, F. & Azziz, R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertil. Steril. 77, 1095–1105 (2002).

    PubMed  Google Scholar 

  229. Carmina, E. & Lobo, R. A. Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil. Steril. 82, 661–665 (2004).

    PubMed  Google Scholar 

  230. Adashi, E. Y., Hsueh, A. J. & Yen, S. S. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology 108, 1441–1449 (1981).

    CAS  PubMed  Google Scholar 

  231. Nestler, J. E. et al. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 83, 2001–2005 (1998).

    CAS  PubMed  Google Scholar 

  232. Carmina, E. et al. The contributions of oestrogen and growth factors to increased adrenal androgen secretion in polycystic ovary syndrome. Hum. Reprod. 14, 307–311 (1999).

    CAS  PubMed  Google Scholar 

  233. Tosi, F. et al. Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. Eur. J. Endocrinol. 164, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  234. Wild, R. A. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 95, 2038–2049 (2010).

    CAS  PubMed  Google Scholar 

  235. Morin-Papunen, L. et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 4649–4654 (2003).

    CAS  PubMed  Google Scholar 

  236. Tang, T. et al. Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre study. Hum. Reprod. 21, 80–89 (2006).

    PubMed  Google Scholar 

  237. Naderpoor, N. et al. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum. Reprod. Update 21, 560–574 (2015).

    CAS  PubMed  Google Scholar 

  238. Orio, F. Jr. et al. Improvement in endothelial structure and function after metformin treatment in young normal-weight women with polycystic ovary syndrome: results of a 6-month study. J. Clin. Endocrinol. Metab. 90, 6072–6076 (2005).

    CAS  PubMed  Google Scholar 

  239. Nestler, J. E., Jakubowicz, D. J., Evans, W. S. & Pasquali, R. Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N. Engl. J. Med. 338, 1876–1880 (1998).

    CAS  PubMed  Google Scholar 

  240. Lord, J. M., Flight, I. H. & Norman, R. J. Insulin-sensitising drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro-inositol) for polycystic ovary syndrome. Cochrane Database Syst. Rev. 3, CD003053 (2003).

  241. Kashyap, S., Wells, G. A. & Rosenwaks, Z. Insulin-sensitizing agents as primary therapy for patients with polycystic ovarian syndrome. Hum. Reprod. 19, 2474–2483 (2004).

    CAS  PubMed  Google Scholar 

  242. Legro, R. S. et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N. Engl. J. Med. 356, 551–566 (2007).

    CAS  PubMed  Google Scholar 

  243. Morley, L. C., Tang, T., Yasmin, E., Norman, R. J. & Balen, A. H. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst. Rev. 11, CD003053 (2017).

    PubMed  Google Scholar 

  244. Balen, A. H. et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 22, 687–708 (2016).

    PubMed  Google Scholar 

  245. Heckman-Stoddard, B. M., DeCensi, A., Sahasrabuddhe, V. V. & Ford, L. G. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 60, 1639–1647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Kurelac, I. et al. Inducing cancer indolence by targeting mitochondrial complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat. Commun. 10, 903 (2019).

    PubMed  PubMed Central  Google Scholar 

  247. Rotermund, C., Machetanz, G. & Fitzgerald, J. C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol. 9, 400 (2018).

    Google Scholar 

  248. Anisimov, V. N. et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 2769–2773 (2008).

    CAS  PubMed  Google Scholar 

  249. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Justice, J. N. et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience 40, 419–436 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Degner, N. R., Wang, J. Y., Golub, J. E. & Karakousis, P. C. Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin. Infect. Dis. 66, 198–205 (2018).

    CAS  PubMed  Google Scholar 

  252. Singhal, A. et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 6, 263ra159 (2014). This study provides evidence for the benefits of metformin treatment as host-adjunctive therapy for improving the effective treatment of tuberculosis.

    PubMed  Google Scholar 

  253. Rangarajan, S. et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat. Med. 24, 1121–1127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Sato, N. et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir. Res. 17, 107 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of grants from Inserm, CNRS, Université Paris Descartes, Agence Nationale de la Recherche (ANR), Société Francophone du Diabète (SFD), Fondation pour la Recherche Médicale (FRM), the Dutch Organization for Scientific Research (ZonMW) and DiabetesFonds.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Benoit Viollet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lactic acidosis

A medical condition characterized by excessively low pH in the bloodstream due to excess lactate production by glycolytic tissues, inadequate lactate utilization by gluconeogenic tissues, or varying combinations of these two processes.

Pharmacokinetics

The study of the transit of a dosed drug in body fluids and tissues over time, as defined by its rate of absorption, distribution, metabolism and excretion.

Pharmacodynamics

The study of the action of a drug in the body, and its biochemical and physiological effects.

Half-maximal inhibitory concentration

(IC50). The concentration of an inhibitor required to decrease the response of the target by 50%.

Pyruvate tolerance

A measure of glycaemic excursion in response to an intraperitoneal or intravenous injection of pyruvate, used to assess hepatic gluconeogenesis.

Cytosolic redox potential

Cytoplasmic oxidation state of the cell, which is assessed by the ratio of reduced to oxidized intracellular metabolite redox couples (for example, lactate/pyruvate ratio).

Type 2 immune cells

Cells involved in type 2 immune responses, such as type 2 innate lymphoid cells, eosinophils, T helper 2 cells, mast cells, basophils and alternatively-activated macrophages.

Reverse electron transport

(RET). The transport of electrons from ubiquinol back to respiratory complex 1, generating a substantial amount of reactive oxygen species.

Incretins

Incretins are gut hormones that are secreted after nutrient intake and stimulate glucose-stimulated insulin secretion.

Lipoapoptosis

A non-canonical form of programmed cell death, which is the result of fatty acid over-accumulation that occurs in diseases associated with over-nutrition and ageing.

Short-chain fatty acid

(SCFA). A fatty acid with fewer than six carbon atoms (for example, acetate, propionate and butyrate) that is the end-product of fermentation of dietary fibres by the anaerobic intestinal microbiota and acts as a signal molecule in the control of mammalian energy metabolism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foretz, M., Guigas, B. & Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 15, 569–589 (2019). https://doi.org/10.1038/s41574-019-0242-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0242-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing