Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

CTLA-4 blockade in murine bone marrow chimeras induces a host-derived antileukemic effect without graft-versus-host disease

Abstract

We studied the effect of CTLA-4 blockade on graft-versus-leukemia and graft-versus-host responses in a mouse model of minor histocompatibility-mismatched bone marrow transplantation. Early CTLA-4 blockade induced acute graft-versus-host disease. Delayed CTLA-4 blockade resulted in a lethal condition with lymphosplenomegaly, but with stable mixed T-cell chimerism, unchanged alloreactive T-cell frequencies and absent anti-host reactivity in vitro. In contrast, multiorgan lymphoproliferative disease with autoimmune hepatitis and circulating anti-DNA auto-antibodies were documented. Splenic lymphocytes exhibited ex vivo spontaneous proliferation and a marked proliferative response against host-type dendritic cells pulsed with syngeneic (host-type) tissue-peptides. Both phenomena were exclusively mediated by host and not donor T cells, supporting an autoimmune pathogenesis. Selectively host-derived T-cell immune reactivity was equally documented against leukemia-peptide-pulsed dendritic cells, and this was paralleled by a strong in vivo antileukemic effect in anti-CTLA-4-treated and subsequently leukemia-challenged chimeras. In conclusion, delayed CTLA-4 blockade induced a host-derived antileukemic effect, occurring in the context of an autoimmune syndrome and strictly separated from graft-versus-host disease. Both antileukemic and autoimmune responses depended on the allogeneic component, as neither effect was seen after syngeneic bone marrow transplantation. Our findings reveal the potential of using CTLA-4 blockade to establish antileukemic effects after allogeneic hematopoietic stem cell transplantation, provided autoimmunity can be controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  2. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 1979; 300: 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  3. Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241.

    CAS  PubMed  Google Scholar 

  4. Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M . Crucial role of timing of donor lymphocyte infusion in generating dissociated graft-versus-host and graft-versus-leukemia responses in mice receiving allogeneic bone marrow transplants. Blood 2002; 100: 1894–1902.

    Article  CAS  PubMed  Google Scholar 

  5. Mapara MY, Kim YM, Wang SP, Bronson R, Sachs DH, Sykes M . Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells. Blood 2002; 100: 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  6. Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E . Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 1999; 93: 2336–2341.

    CAS  PubMed  Google Scholar 

  7. Bleakley M, Riddell SR . Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 2004; 4: 371–380.

    Article  CAS  PubMed  Google Scholar 

  8. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A et al. Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 1996; 87: 3587–3592.

    CAS  PubMed  Google Scholar 

  9. Roskrow MA, Suzuki N, Gan Y, Sixbey JW, Ng CY, Kimbrough S et al. Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood 1998; 91: 2925–2934.

    CAS  PubMed  Google Scholar 

  10. Pardoll D, Allison J . Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 2004; 10: 887–892.

    Article  CAS  PubMed  Google Scholar 

  11. Salomon B, Bluestone JA . Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225–252.

    Article  CAS  PubMed  Google Scholar 

  12. Riley JL, June CH . The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 2005; 105: 13–21.

    Article  CAS  PubMed  Google Scholar 

  13. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3: 541–547.

    Article  CAS  PubMed  Google Scholar 

  14. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995; 270: 985–988.

    Article  CAS  PubMed  Google Scholar 

  15. Chambers CA, Sullivan TJ, Allison JP . Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997; 7: 885–895.

    Article  CAS  PubMed  Google Scholar 

  16. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA . CTLA-4: a negative regulator of autoimmune disease. J Exp Med 1996; 184: 783–788.

    Article  CAS  PubMed  Google Scholar 

  17. Luhder F, Hoglund P, Allison JP, Benoist C, Mathis D . Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J Exp Med 1998; 187: 427–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leach DR, Krummel MF, Allison JP . Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997; 94: 8099–8103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI . In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci USA 1999; 96: 11476–11481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Elsas A, Sutmuller RP, Hurwitz AA, Ziskin J, Villasenor J, Medema JP et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 2001; 194: 481–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 2000; 60: 2444–2448.

    CAS  PubMed  Google Scholar 

  23. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA . Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 1998; 58: 5301–5304.

    CAS  PubMed  Google Scholar 

  24. Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003; 100: 4712–4717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanderson K, Scotland R, Lee P, Liu D, Groshen S, Snively J et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005; 23: 741–750.

    Article  CAS  PubMed  Google Scholar 

  26. Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 2005; 23: 6043–6053.

    Article  CAS  PubMed  Google Scholar 

  27. Blansfield JA, Beck KE, Tran K, Yang JC, Hughes MS, Kammula US et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother 2005; 28: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Sharpe AH, Vallera DA . Opposing roles of CD28:B7 and CTLA-4:B7 pathways in regulating in vivo alloresponses in murine recipients of MHC disparate T cells. J Immunol 1999; 162: 6368–6377.

    CAS  PubMed  Google Scholar 

  29. Hurley CK, Fernandez VM, Setterholm M . Maximizing optimal hematopoietic stem cell donor selection from registries of unrelated adult volunteers. Tissue Antigens 2003; 61: 415–424.

    Article  CAS  PubMed  Google Scholar 

  30. Sefrioui H, Billiau AD, Waer M . Graft-versus-leukemia effect in minor antigen mismatched chimeras given delayed donor leucocyte infusion: immunoregulatory aspects and role of donor T and ASGM1-positive cells. Transplantation 2000; 70: 348–353.

    Article  CAS  PubMed  Google Scholar 

  31. Salam A, Waer M . Graft-versus-host reactivity and graft-versus-leukemia effect in murine allogeneic bone marrow chimeras conditioned with total body irradiation or total lymphoid irradiation. Transplantation 1996; 61: 826–830.

    Article  CAS  PubMed  Google Scholar 

  32. Blazar BR, Taylor PA, McElmurry R, Tian L, Panoskaltsis-Mortari A, Lam S et al. Engraftment of severe combined immune deficient mice receiving allogeneic bone marrow via in utero or postnatal transfer. Blood 1998; 92: 3949–3959.

    CAS  PubMed  Google Scholar 

  33. Kim YM, Sachs T, Asavaroengchai W, Bronson R, Sykes M . Graft-versus-host disease can be separated from graft-versus-lymphoma effects by control of lymphocyte trafficking with FTY720. J Clin Invest 2003; 111: 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blazar BR, Taylor PA, McElmurry R, Tian L, Panoskaltsis-Mortari A, Lam S et al. Engraftment of severe combined immune deficient mice receiving allogeneic bone marrow via in utero or postnatal transfer. Blood 1998; 92: 3949–3959.

    CAS  PubMed  Google Scholar 

  35. Wells AD, Gudmundsdottir H, Turka LA . Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J Clin Invest 1997; 100: 3173–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Etten E, Decallonne B, Bouillon R, Mathieu C . NOD bone marrow-derived dendritic cells are modulated by analogs of 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 2004; 89–90: 457–459.

    Article  PubMed  Google Scholar 

  37. Bonomo A, Kehn PJ, Payer E, Rizzo L, Cheever AW, Shevach EM . Pathogenesis of post-thymectomy autoimmunity. Role of syngeneic MLR-reactive T cells. J Immunol 1995; 154: 6602–6611.

    CAS  PubMed  Google Scholar 

  38. Xia G, Goebels J, Rutgeerts O, Vandeputte M, Waer M . Transplantation tolerance and autoimmunity after xenogeneic thymus transplantation. J Immunol 2001; 166: 1843–1854.

    Article  CAS  PubMed  Google Scholar 

  39. Lapierre P, Beland K, Djilali-Saiah I, Alvarez F . Type 2 autoimmune hepatitis murine model: the influence of genetic background in disease development. J Autoimmun 2006; 26: 82–89.

    Article  CAS  PubMed  Google Scholar 

  40. Czaja AJ, Freese DK . Diagnosis and treatment of autoimmune hepatitis. Hepatology 2002; 36: 479–497.

    Article  PubMed  Google Scholar 

  41. Yasmineh WG, Filipovich AH, Killeen AA . Serum 5′nucleotidase and alkaline phosphatase—highly predictive liver function tests for the diagnosis of graft-versus-host disease in bone marrow transplant recipients. Transplantation 1989; 48: 809–814.

    Article  CAS  PubMed  Google Scholar 

  42. Lapierre P, Beland K, Djilali-Saiah I, Alvarez F . Type 2 autoimmune hepatitis murine model: the influence of genetic background in disease development. J Autoimmun 2006; 26: 82–89.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  45. Porter D, Levine JE . Graft-versus-host disease and graft-versus-leukemia after donor leukocyte infusion. Semin Hematol 2006; 43: 53–61.

    Article  PubMed  Google Scholar 

  46. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  47. Merad M, Hoffmann P, Ranheim E, Slaymaker S, Manz MG, Lira SA et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med 2004; 10: 510–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reddy P, Maeda Y, Liu C, Krijanovski OI, Korngold R, Ferrara JL . A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med 2005; 11: 1244–1249.

    Article  CAS  PubMed  Google Scholar 

  49. Chakraverty R, Eom HS, Sachs J, Buchli J, Cotter P, Hsu R et al. Host MHC Class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood 2006; 108: 2106–2113. E-pub, 6 June 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rubio MT, Saito TI, Kattleman K, Zhao G, Buchli J, Sykes M . Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol 2005; 175: 665–676.

    Article  CAS  PubMed  Google Scholar 

  51. Dey BR, McAfee S, Colby C, Cieply K, Caron M, Saidman S et al. Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 2005; 128: 351–359.

    Article  CAS  PubMed  Google Scholar 

  52. van Elsas A, Hurwitz AA, Allison JP . Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999; 190: 355–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robinson MR, Chan CC, Yang JC, Rubin BI, Gracia GJ, Sen HN et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J Immunother 2004; 27: 478–479.

    Article  PubMed  Google Scholar 

  54. Waterhouse P, Bachmann MF, Penninger JM, Ohashi PS, Mak TW . Normal thymic selection, normal viability and decreased lymphoproliferation in T cell receptor-transgenic CTLA-4-deficient mice. Eur J Immunol 1997; 27: 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  55. Chambers CA, Cado D, Truong T, Allison JP . Thymocyte development is normal in CTLA-4-deficient mice. Proc Natl Acad Sci USA 1997; 94: 9296–9301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cilio CM, Daws MR, Malashicheva A, Sentman CL, Holmberg D . Cytotoxic T lymphocyte antigen 4 is induced in the thymus upon in vivo activation and its blockade prevents anti-CD3-mediated depletion of thymocytes. J Exp Med 1998; 188: 1239–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kwon H, Jun HS, Khil LY, Yoon JW . Role of CTLA-4 in the activation of single- and double-positive thymocytes. J Immunol 2004; 173: 6645–6653.

    Article  CAS  PubMed  Google Scholar 

  58. Read S, Malmstrom V, Powrie F . Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192: 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kingsley CI, Karim M, Bushell AR, Wood KJ . CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002; 168: 1080–1086.

    Article  CAS  PubMed  Google Scholar 

  60. Wood KJ, Sakaguchi S . Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210.

    Article  CAS  PubMed  Google Scholar 

  61. Sakaguchi S, Sakaguchi N . Regulatory T cells in immunologic self-tolerance and autoimmune disease. Int Rev Immunol 2005; 24: 211–226.

    Article  CAS  PubMed  Google Scholar 

  62. Hoffmann P, Edinger M . CD4+CD25+ regulatory T cells and graft-versus-host disease. Semin Hematol 2006; 43: 62–69.

    Article  CAS  PubMed  Google Scholar 

  63. Yamaguchi T, Sakaguchi S . Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2006; 16: 115–123.

    Article  CAS  PubMed  Google Scholar 

  64. Tang Q, Boden EK, Henriksen KJ, Bour-Jordan H, Bi M, Bluestone JA . Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur J Immunol 2004; 34: 2996–3005.

    Article  CAS  PubMed  Google Scholar 

  65. Chambers CA, Sullivan TJ, Truong T, Allison JP . Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur J Immunol 1998; 28: 3137–3143.

    Article  CAS  PubMed  Google Scholar 

  66. McCoy KD, Hermans IF, Fraser JH, Le Gros G, Ronchese F . Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8(+) T cells independently of CD4(+) T cell help. J Exp Med 1999; 189: 1157–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lute KD, May Jr KF, Lu P, Zhang H, Kocak E, Mosinger B et al. Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood 2005; 106: 3127–3133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kocak E, Lute K, Chang X, May Jr KF, Exten KR, Zhang H et al. Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res 2006; 66: 7276–7284.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Flanders National Fund for Scientific Research and the Belgian Federation against Cancer. Sabine Fevery holds a grant from the Flanders National Fund for Scientific Research. Ben Sprangers is a doctoral fellow, An D Billiau a postdoctoral fellow and P Vandenberghe a senior clinical investigator of the Flanders National Fund for Scientific Research. We thankfully acknowledge expert assistance of Karen Moermans (Laboratory of Experimental Medicine and Endocrinology, University of Leuven), Lieve Ophalvens,5 Katleen Van Meerbeek,5 Erna Van Dissel5 and Dr Gert De Hertogh.5 We thank the staff of the animal facility for providing excellent animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Billiau.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fevery, S., Billiau, A., Sprangers, B. et al. CTLA-4 blockade in murine bone marrow chimeras induces a host-derived antileukemic effect without graft-versus-host disease. Leukemia 21, 1451–1459 (2007). https://doi.org/10.1038/sj.leu.2404720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404720

Keywords

This article is cited by

Search

Quick links