Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers

Abstract

Bipolar disorder afflicts approximately 1–3% of both men and women, and is coincident with major economic, societal, medical, and interpersonal consequences. Current mediations used for its treatment are associated with variable rates of efficacy and often intolerable side effects. While preclinical and clinical knowledge in the neurosciences has expanded at a tremendous rate, recent years have seen no major breakthroughs in the development of novel types of treatment for bipolar disorder. We review here approaches to develop novel treatments specifically for bipolar disorder. Deliberate (ie not by serendipity) treatments may come from one of two general mechanisms: (1) Understanding the mechanism of action of current medications and thereafter designing novel drugs that mimics these mechanism(s); (2) Basing medication development upon the hypothetical or proven underlying pathophysiology of bipolar disorder. In this review, we focus upon the first approach. Molecular and cellular targets of current mood stabilizers include lithium inhibitable enzymes where lithium competes for a magnesium binding site (inositol monophosphatase, inositol polyphosphate 1-phosphatase, glycogen synthase kinase-3 (GSK-3), fructose 1,6-bisphosphatase, bisphosphate nucleotidase, phosphoglucomutase), valproate inhibitable enzymes (succinate semialdehyde dehydrogenase, succinate semialdehyde reductase, histone deacetylase), targets of carbamazepine (sodium channels, adenosine receptors, adenylate cyclase), and signaling pathways regulated by multiple drugs of different classes (phosphoinositol/protein kinase C, cyclic AMP, arachidonic acid, neurotrophic pathways). While the task of developing novel medications for bipolar disorder is truly daunting, we are hopeful that understanding the mechanism of action of current mood stabilizers will ultimately lead clinical trials with more specific medications and thus better treatments those who suffer from this devastating illness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Goodwin FK, Jamison KR . Manic–Depressive Illness. Oxford University Press: New York, 1990 pp 938.

    Google Scholar 

  2. Calabrese JR, Hirschfeld RM, Reed M, Davies MA, Frye MA, Keck PE et al. Impact of bipolar disorder on a U.S. community sample. J Clin Psychiatry 2003; 64: 425–432.

    PubMed  Google Scholar 

  3. Woods SW . The economic burden of bipolar disease. J Clin Psychiatry 2000; 61(Supp 13): 38–41.

    PubMed  Google Scholar 

  4. Simon GE . Social and economic burden of mood disorders. Biol Psychiatry 2003; 54: 208–215.

    PubMed  Google Scholar 

  5. Peele PB, Xu Y, Kupfer DJ . Insurance expenditures on bipolar disorder: clinical and parity implications. Am J Psychiatry 2003; 160: 1286–1290.

    PubMed  Google Scholar 

  6. de Zelicourt M, Dardennes R, Verdoux H, Gandhi G, Papatheodorou ML, Edgell ET et al. [Bipolar I disorder in France: prevalence of manic episodes and hospitalisation-related costs]. Encephale 2003; 29: 248–253.

    CAS  PubMed  Google Scholar 

  7. Kleinman L, Lowin A, Flood E, Gandhi G, Edgell E, Revicki D . Costs of bipolar disorder. Pharmacoeconomics 2003; 21: 601–622.

    PubMed  Google Scholar 

  8. Evans DL, Charney DS . Mood disorders and medical illness: a major public health problem. Biol Psychiatry 2003; 54: 177–180.

    PubMed  Google Scholar 

  9. Nemeroff CB . Safety of available agents used to treat bipolar disorder: focus on weight gain. J Clin Psychiatry 2003; 64: 532–539.

    CAS  PubMed  Google Scholar 

  10. Keck Jr PE, Manji HK . Current and emerging treatments for acute mania and long-term prophylaxis for bipolar disorder. In: Davis KL, Charney DS, Coyle JT, Nemeroff CB (eds). Neuropsychopharmacology: The Fifth Generation of Progress. Lippincott Williams & Wilkins: Philadelphia, 2002 pp 1109–1118.

    Google Scholar 

  11. Murray CJL, Lopez AD . The Global Burden of Disease Summary. Harvard School of Public Health: Cambridge, MA, 1996.

    Google Scholar 

  12. Muzina DJ, El-Sayegh S, Calabrese JR . Antiepileptic drugs in psychiatry-focus on randomized controlled trial. Epilepsy Res 2002; 50: 195–202.

    CAS  PubMed  Google Scholar 

  13. Strakowski SM, Del Bello MP, Adler CM, Keck Jr PE . Atypical antipsychotics in the treatment of bipolar disorder. Expert Opin Pharmacother 2003; 4: 751–760.

    PubMed  Google Scholar 

  14. Quiroz J, Singh J, Gould TD, Zarate CA, Manji HK . Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry, in press.

  15. Gould TD, Manji HK . Signaling networks in the pathophysiology and treatment of mood disorders. J Psychosom Res 2002; 53: 687–697.

    PubMed  Google Scholar 

  16. Chen G, Huang LD, Jiang YM, Manji HK . The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 1999; 72: 1327–1330.

    CAS  PubMed  Google Scholar 

  17. Nestler EJ, Gould E, Manji HK, Buncan M, Duman RS, Greshenfeld HK et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002; 52: 503–528.

    PubMed  Google Scholar 

  18. Gould TD, Gray NA, Manji HK . The cellular neurobiology of severe mood and anxiety disorders: implications for the development of novel therapeutics. In: Charney DS (ed). Molecular Neurobiology for the Clinician. American Psychiatric Press. Inc.: Washington, 2003 pp 123–227.

    Google Scholar 

  19. Coyle JT, Duman RS . Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003; 38: 157–160.

    CAS  PubMed  Google Scholar 

  20. Einat H, Belmaker RH, Manji HK . New approaches to modeling bipolar disorder. Psychopharm Bul 2003; 37: 47–63.

    Google Scholar 

  21. Amari L, Layden B, Rong Q, Geraldes CF, Mota de Freitas D . Comparison of fluorescence, (31)P NMR, and (7)Li NMR spectroscopic methods for investigating Li(+)/Mg(2+) competition for biomolecules. Anal Biochem 1999; 272: 1–7.

    CAS  PubMed  Google Scholar 

  22. Ryves WJ, Harwood AJ . Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 2001; 280: 720–725.

    CAS  PubMed  Google Scholar 

  23. Gould TD, Chen G, Manji HK . Mood stabilizer psychopharmacology. Clin Neurosci Res 2002; 2: 193–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. York JD, Ponder JW, Majerus PW . Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 1995; 92: 5149–5153.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Spiegelberg BD, Xiong JP, Smith JJ, Gu RF, York JD . Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3′-nucleotidase inhibited by inositol 1,4-bisphosphate. J Biol Chem 1999; 274: 13619–13628.

    CAS  PubMed  Google Scholar 

  27. Nordenberg J, Kaplansky M, Beery E, Klein S, Beitner R . Effects of lithium on the activities of phosphofructokinase and phosphoglucomutase and on glucose-1,6-diphosphate levels in rat muscles, brain and liver. Biochem Pharmacol 1982; 31: 1025–1031.

    CAS  PubMed  Google Scholar 

  28. Rhyu GI, Ray Jr WJ, Markley JL . Enzyme-bound intermediates in the conversion of glucose 1-phosphate to glucose 6-phosphate by phosphoglucomutase. Phosphorus NMR studies. Biochemistry 1984; 23: 252–260.

    CAS  PubMed  Google Scholar 

  29. Ray Jr WJ, Szymanki ES, Ng L . The binding of lithium and of anionic metabolites to phosphoglucomutase. Biochim Biophys Acta 1978; 522: 434–442.

    CAS  PubMed  Google Scholar 

  30. Masuda CA, Xavier MA, Mattos KA, Galina A, Montero-Lomeli M . Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 2001; 276: 37794–37801.

    CAS  PubMed  Google Scholar 

  31. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    CAS  PubMed  Google Scholar 

  33. Gurvich N, Klein PS . Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol Ther 2002; 96: 45–66.

    CAS  PubMed  Google Scholar 

  34. Moon RT, Bowerman B, Boutros M, Perrimon N . The promise and perils of Wnt signaling through beta-catenin. Science 2002; 296: 1644–1646.

    CAS  PubMed  Google Scholar 

  35. Woodgett JR . Judging a protein by more than its name: gsk-3. Sci STKE 2001; 2001: RE12.

    CAS  PubMed  Google Scholar 

  36. Cohen P, Frame S . The renaissance of GSK3. Nat Rev Mol Cell Biol 2001; 2: 769–776.

    CAS  PubMed  Google Scholar 

  37. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL et al. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001; 276: 251–260.

    CAS  PubMed  Google Scholar 

  38. Smith DG, Buffet M, Fenwick AE, Haigh D, Ife RJ, Saunders M et al. 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett 2001; 11: 635–639.

    CAS  PubMed  Google Scholar 

  39. Bhat RV, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y et al. Structural insights and biological effects of glycogen synthase kinase 3 specific inhibitor AR-A014418. J Biol Chem 2003; 278: 45937–45945.

    CAS  PubMed  Google Scholar 

  40. Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR . Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes 2002; 51: 2190–2198.

    CAS  PubMed  Google Scholar 

  41. Martinez A, Alonso M, Castro A, Perez C, Moreno FJ . First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease. J Med Chem 2002; 45: 1292–1299.

    CAS  PubMed  Google Scholar 

  42. Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H . Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther 2003; 305: 974–980.

    CAS  PubMed  Google Scholar 

  43. Majerus PW . Inositol phosphate biochemistry. Annu Rev Biochem 1992; 61: 225–250.

    CAS  PubMed  Google Scholar 

  44. Berridge MJ, Downes CP, Hanley MR . Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989; 59: 411–419.

    CAS  PubMed  Google Scholar 

  45. Atack JR . Inositol monophosphatase inhibitors—lithium mimetics? Med Res Rev 1997; 17: 215–224.

    CAS  PubMed  Google Scholar 

  46. Atack JR, Cook SM, Watt AP, Fletcher SR, Ragan CI . In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J Neurochem 1993; 60: 652–658.

    CAS  PubMed  Google Scholar 

  47. Atack JR, Prior AM, Fletcher SR, Quirk K, McKernan R, Ragan CI . Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. J Pharmacol Exp Ther 1994; 270: 70–76.

    CAS  PubMed  Google Scholar 

  48. Gould TD, Zarate CA, Manji HK . Glycogen synthase kinase-3: a target for novel bipolar disolder treatments. J Clin Psychiatry 2004; 65: 10–21.

    CAS  PubMed  Google Scholar 

  49. Gani D, Downes CP, Batty I, Bramham J . Lithium and myo-inositol homeostasis. Biochim Biophys Acta 1993; 1177: 253–269.

    CAS  PubMed  Google Scholar 

  50. Naccarato WF, Ray RE, Wells WW . Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch Biochem Biophys 1974; 164: 194–201.

    CAS  PubMed  Google Scholar 

  51. Hallcher LM, Sherman WR . The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255: 10896–10901.

    CAS  PubMed  Google Scholar 

  52. Ragan CI, Watling KJ, Gee NS, Aspley S, Jackson RG, Reid GG et al. The dephosphorylation of inositol 1,4-bisphosphate to inositol in liver and brain involves two distinct Li+-sensitive enzymes and proceeds via inositol 4-phosphate. Biochem J 1988; 249: 143–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Inhorn RC, Majerus PW . Properties of inositol polyphosphate 1-phosphatase. J Biol Chem 1988; 263: 14559–14565.

    CAS  PubMed  Google Scholar 

  54. Berridge MJ, Downes CP, Hanley MR . Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 1982; 206: 587–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nahorski SR, Ragan CI, Challiss RA . Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991; 12: 297–303.

    CAS  PubMed  Google Scholar 

  56. Allison JH, Stewart MA . Reduced brain inositol in lithium-treated rats. Nat New Biol 1971; 233: 267–268.

    CAS  PubMed  Google Scholar 

  57. Atack, JR . Lithium, phosphatidylinositol signaling, and bipolar disorder. In: Manji HK, Bowden CL, Belmaker RH (eds). Bipolar Medications: Mechanism of Action. American Psychiatric Press, Inc.: Washington, DC, 2000.

    Google Scholar 

  58. Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua J et al. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 1999; 156: 1902–1908.

    CAS  PubMed  Google Scholar 

  59. Pollack SJ, Atack JR, Knowles MR, McAllister G, Ragan CI, Baker R et al. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci USA 1994; 91: 5766–5770.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bone R, Springer JP, Atack JR . Structure of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci USA 1992; 89: 10031–10035.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kao KR, Masui Y, Elinson RP . Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 1986; 322: 371–373.

    CAS  PubMed  Google Scholar 

  62. He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB . Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 1995; 374: 617–622.

    CAS  PubMed  Google Scholar 

  63. Gould TD, Chen G, Manji HK . In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology 2004; 29: 32–38.

    CAS  PubMed  Google Scholar 

  64. Sun X, Sato S, Murayama O, Murayama M, Park JM, Yamaguchi H et al. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci Lett 2002; 321: 61–64.

    CAS  PubMed  Google Scholar 

  65. Phiel CJ, Wilson CA, Lee VM, Klein PS . GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003; 423: 435–439.

    CAS  PubMed  Google Scholar 

  66. Frame S, Cohen P . GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359: 1–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gould TD, Manji HK . The wnt signaling pathway in bipolar disorder. Neuroscientist 2002; 8: 497–511.

    CAS  PubMed  Google Scholar 

  68. Lenox RH, Gould TD, Manji HK . Endophenotypes in bipolar disorder. Am J Med Genet 2002; 114: 391–406.

    PubMed  Google Scholar 

  69. Jope RS, Bijur GN . Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol Psychiatry 2002; 7(Suppl 1): S35–S45.

    CAS  PubMed  Google Scholar 

  70. Manji HK, Moore GJ, Chen G . Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 1999; 46: 929–940.

    CAS  PubMed  Google Scholar 

  71. Chuang DM, Chen R, Chalecka-Franaszek E, Ren M, Hashimoto R, Senatorov V et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disorders 2002; 4: 129–136.

    CAS  PubMed  Google Scholar 

  72. Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H . Rapid antidepressive-like activity of specific glycogen synthase kinase-3inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 2004; 55: 781–784.

    CAS  PubMed  Google Scholar 

  73. Gould TD, Einat H, Bhat R, Manji HK . AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. submitted.

  74. Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jcpe RS . In vivo regulation of glycogen synthase kinase-3beta (GSK-3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 2004.

  75. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainctdinov RR et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004.

  76. Kaidanovich O, Eldar-Finkelman H . The role of glycogen synthase kinase-3 in insulin resistance and Type 2 diabetes. Expert Opin Ther Targets 2002; 6: 555–561.

    CAS  PubMed  Google Scholar 

  77. Bhat RV, Budd SL . GSK3beta signalling: casting a wide net in Alzheimer's disease. Neurosignals 2002; 11: 251–261.

    CAS  PubMed  Google Scholar 

  78. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J . Regulation of tau phosphorylation and protection against beta-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disord 2002; 4: 153–165.

    CAS  PubMed  Google Scholar 

  79. Tong H, Imahashi K, Steenbergen C, Murphy E . Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase—dependent pathway is cardioprotective. Circ Res 2002; 90: 377–379.

    CAS  PubMed  Google Scholar 

  80. Ren M, Senatorov VV, Chen RW, Chuang DM . Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci USA 2003; 100: 6210–6215.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA 2000; 97: 11074–11079.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H . Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 2002; 295: 102–106.

    CAS  PubMed  Google Scholar 

  83. Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 2000; 7: 793–803.

    CAS  PubMed  Google Scholar 

  84. Cross DA, Culbert AA, Chalmers KA, Facci L, Skaper SD, Reith AD . Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem 2001; 77: 94–102.

    CAS  PubMed  Google Scholar 

  85. Hers I, Tavare JM, Denton RM . The protein kinase C inhibitors bisindolylmaleimide I (GF 109203x) and IX (Ro 31-8220) are potent inhibitors of glycogen synthase kinase-3 activity. FEBS Lett 1999; 460: 433–436.

    CAS  PubMed  Google Scholar 

  86. Meijer L, Thunnissen AM, White AW, Garnier M, Nikolic M, Tsai LH et al. Inhibition of cyclin-dependent kinases GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Chem Biol 2000; 7: 51–63.

    CAS  PubMed  Google Scholar 

  87. Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM et al. Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem 2000; 267: 5983–5994.

    CAS  PubMed  Google Scholar 

  88. Dorronsoro I, Castro A, Martinez A . Inhibitors of glycogen synthase kinase-3: future therapy for unmet medical needs. Expert Opin Ther Patents 2002; 12: 1527–1536.

    CAS  Google Scholar 

  89. Martinez A, Castro A, Dorronsoro I, Alonso M . Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev 2002; 22: 373–384.

    CAS  PubMed  Google Scholar 

  90. Nowak G, Siwek M, Dudek D, Zieba A, Pilc A . Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 2003; 55: 1143–1147.

    CAS  PubMed  Google Scholar 

  91. Kroczka B, Branski P, Palucha A, Pilc A, Nowak G . Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 2001; 55: 297–300.

    CAS  PubMed  Google Scholar 

  92. Nowak G, Szewczyk B, Wieronska JM, Branski P, Palucha A, Pilc A et al. Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull 2003; 61: 159–164.

    CAS  PubMed  Google Scholar 

  93. Kroczka B, Zieba A, Dudek D, Pilc A, Nowak G . Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol J Pharmacol 2000; 52: 403–406.

    CAS  PubMed  Google Scholar 

  94. Szewczyk B, Branski P, Wieronska JM, Palucha A, Pilc A, Nowak G . Interaction of zinc with antidepressants in the forced swimming test in mice. Pol J Pharmacol 2002; 54: 681–685.

    CAS  PubMed  Google Scholar 

  95. Marcus F, Hosey MM . Purification and properties of liver fructose 1,6-bisphosphatase from C57BL/KsJ normal and diabetic mice. J Biol Chem 1980; 255: 2481–2486.

    CAS  PubMed  Google Scholar 

  96. Nakashima K, Tuboi S . Size-dependent allosteric effects of monovalent cations on rabbit liver fructose-1,6-bisphosphatase. J Biol Chem 1976; 251: 4315–4321.

    CAS  PubMed  Google Scholar 

  97. Villeret V, Huang S, Fromm HJ, Lipscomb WN . Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 1995; 92: 8916–8920.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang R, Villeret V, Lipscomb WN, Fromm HJ . Kinetics and mechanisms of activation and inhibition of porcine liver fructose-1,6-bisphosphatase by monovalent cations. Biochemistry 1996; 35: 3038–3043.

    CAS  PubMed  Google Scholar 

  99. Wright SW, Carlo AA, Danley DE, Hageman DL, Karam GA, Mansour MN et al. 3-(2-carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid: an allosteric inhibitor of fructose-1,6-bisphosphatase at the AMP site. Bioorg Med Chem Lett 2003; 13: 2055–2058.

    CAS  PubMed  Google Scholar 

  100. Lopez-Coronado JM, Belles JM, Lesage F, Serrano R, Rodriguez PL . A novel mammalian lithium-sensitive enzyme with a dual enzymatic activity, 3′-phosphoadenosine 5′-phosphate phosphatase and inositol-polyphosphate 1-phosphatase. J Biol Chem 1999; 274: 16034–16039.

    CAS  PubMed  Google Scholar 

  101. Yenush L, Belles JM, Lopez-Coronado JM, Gil-Mascarell R, Serrano R, Rodriguez PL . A novel target of lithium therapy. FEBS Lett 2000; 467: 321–325.

    CAS  PubMed  Google Scholar 

  102. Patel S, Yenush L, Rodriguez PL, Serrano R, Blundell TL . Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 3′-phosphoadenosine-5′-phosphate phosphatase activities: a novel target of lithium therapy. J Mol Biol 2002; 315: 677–685.

    CAS  PubMed  Google Scholar 

  103. Agam G, Shaltiel G . Possible role of 3′(2′)-phosphoadenosine-5′-phosphate phosphatase in the etiology and therapy of bipolar disorder. Prog Neuro-psychopharm Biol Psych 2003; 27: 723–727.

    CAS  Google Scholar 

  104. Johannessen CU . Mechanisms of action of valproate: a commentary. Neurochem Int 2000; 37: 103–110.

    CAS  PubMed  Google Scholar 

  105. Owens MJ, Nemeroff CB . Pharmacology of valproate. Psychopharmacol Bull 2003; 37: 17–24.

    PubMed  Google Scholar 

  106. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741.

    CAS  PubMed  Google Scholar 

  108. Siafaka-Kapadai A, Patiris M, Bowden C, Javors M . Incorporation of [3H]valproic acid into lipids in GT1-7 neurons. Biochem Pharmacol 1998; 56: 207–212.

    CAS  PubMed  Google Scholar 

  109. Macdonald RL, Kelly KM . Antiepileptic drug mechanisms of action. Epilepsia 1995; 36, (Suppl 2) S2–S12.

    CAS  PubMed  Google Scholar 

  110. van der Laan JW, de Boer T, Bruinvels J . Di-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J Neurochem 1979; 32: 1769–1780.

    CAS  PubMed  Google Scholar 

  111. Anlezark GM, Horton RW, Meldrum BS, Sawaya MC, Stephenson JD . Proceedings: gamma-aminobutyric acid metabolism and the anticonvulsant action of ethanolamine-o-sulphate and di-n-propylacetate. Br J Pharmacol 1976; 56: 383P–384P.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sawaya MC, Horton RW, Meldrum BS . Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 1975; 16: 649–655.

    CAS  PubMed  Google Scholar 

  113. Whittle SR, Turner AJ . Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain. J Neurochem 1978; 31: 1453–1459.

    CAS  PubMed  Google Scholar 

  114. Balazs R, Machiyama Y, Hammond BJ, Julian T, Richter D . The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 1970; 116: 445–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Leiderman DB, Balish M, Bromfield EB, Theodore WH . Effect of valproate on human cerebral glucose metabolism. Epilepsia 1991; 32: 417–422.

    CAS  PubMed  Google Scholar 

  116. Gaillard WD, Zeffiro T, Fazilat S, DeCarli C, Theodore WH . Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia 1996; 37: 515–521.

    CAS  PubMed  Google Scholar 

  117. Godin Y, Heiner L, Mark J, Mandel P . Effects of DI-n-propylacetate, and anticonvulsive compound, on GABA metabolism. J Neurochem 1969; 16: 869–873.

    CAS  PubMed  Google Scholar 

  118. Loscher W . Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 1993; 18: 485–502.

    CAS  PubMed  Google Scholar 

  119. Larsson OM, Gram L, Schousboe I, Schousboe A . Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurones and astrocytes. Neuropharmacology 1986; 25: 617–625.

    CAS  PubMed  Google Scholar 

  120. Ketter TA, Wang PW . The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. J Clin Psychiatry 2003; 64(Suppl 3): 15–20.

    CAS  PubMed  Google Scholar 

  121. Winterer G . Valproate and GABAergic system effects. Neuropsychopharmacology 2003; 28: 2050–2051.

    CAS  PubMed  Google Scholar 

  122. Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 2002; 99: 17095–17100.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yildirim E, Zhang Z, Uz T, Chen C, Manev R, Manev H . Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci Lett 2003; 345: 141–143.

    CAS  PubMed  Google Scholar 

  124. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS . Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 2004; 64: 1079–1086.

    CAS  PubMed  Google Scholar 

  125. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    CAS  PubMed  Google Scholar 

  126. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003; 100: 2041–2046.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 2003; 23: 9418–9427.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McLean MJ, Macdonald RL . Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 1983; 227: 779–789.

    CAS  PubMed  Google Scholar 

  129. Schwarz JR, Grigat G . Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia 1989; 30: 286–294.

    CAS  PubMed  Google Scholar 

  130. Courtney KR, Etter EF . Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur J Pharmacol 1983; 88: 1–9.

    CAS  PubMed  Google Scholar 

  131. Bowden CL, Calabrese JR, Sachs G, Yatham LN, Asghar SA, Hompland M et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 2003; 60: 392–400.

    CAS  PubMed  Google Scholar 

  132. Calabrese JR, Bowden CL, Sachs GS, Ascher JA, Monaghan E, Rudd GD . A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J Clin Psychiatry 1999; 60: 79–88.

    CAS  PubMed  Google Scholar 

  133. Mishory A, Yaroslavsky Y, Bersudsky Y, Belmaker RH . Phenytoin as an antimanic anticonvulsant: a controlled study. Am J Psychiatry 2000; 157: 463–465.

    CAS  PubMed  Google Scholar 

  134. Mishory A, Winokur M, Bersudsky Y . Prophylactic effect of phenytoin in bipolar disorder: a controlled study. Bipolar Disord 2003; 5: 464–467.

    CAS  PubMed  Google Scholar 

  135. Van Calker D, Biber K, Walden J, Gebicke P, Berger M . Carbamazepine and adenosine receptors. In: Manji HK, Bowden CL, Belmaker RH (eds). Bipolar Medications: Mechanisms of Action. American Psychiatric Press: Washington, DC, 2000 pp 331–345.

    Google Scholar 

  136. Lewin E, Bleck V . Cyclic AMP accumulation in cerebral cortical slices: effect of carbamazepine, phenobarbital, and phenytoin. Epilepsia 1977; 18: 237–242.

    CAS  PubMed  Google Scholar 

  137. Skerritt JH, Johnston GA, Chow SC . Interactions of the anticonvulsant carbamazepine with adenosine receptors 2. Pharmacological studies. Epilepsia 1983; 24: 643–650.

    CAS  PubMed  Google Scholar 

  138. Marangos PJ, Post RM, Patel J, Zander K, Parma A, Weiss S . Specific and potent interactions of carbamazepine with brain adenosine receptors. Eur J Pharmacol 1983; 93: 175–182.

    CAS  PubMed  Google Scholar 

  139. Skeritt JH, Davies LP, Johnston GA . A purinergic component in the anticonvulsant action of carbamazepine? Eur J Pharmacol 1982; 82: 195–197.

    CAS  PubMed  Google Scholar 

  140. Weir RL, Padgett W, Daly JW, Anderson SM . Interaction of anticonvulsant drugs with adenosine receptors in the central nervous system. Epilepsia 1984; 25: 492–498.

    CAS  PubMed  Google Scholar 

  141. Durcan MJ, Morgan PF . Prospective role for adenosine and adenosinergic systems in psychiatric disorders. Psychol Med 1990; 20: 475–486.

    CAS  PubMed  Google Scholar 

  142. Van Calker D, Steber R, Klotz KN, Greil W . Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. Eur J Pharmacol 1991; 206: 285–290.

    CAS  PubMed  Google Scholar 

  143. Marangos PJ, Weiss SR, Montgomery P, Patel J, Narang PK, Cappabianca AM et al. Chronic carbamazepine treatment increases brain adenosine receptors. Epilepsia 1985; 26: 493–498.

    CAS  PubMed  Google Scholar 

  144. Marangos PJ, Montgomery P, Weiss SR, Patel J, Post RM . Persistent upregulation of brain adenosine receptors in response to chronic carbamazepine treatment. Clin Neuropharmacol 1987; 10: 443–448.

    CAS  PubMed  Google Scholar 

  145. Biber K, Walden J, Gebicke-Harter P, Berger M, van Calker D . Carbamazepine inhibits the potentiation by adenosine analogues of agonist induced inositolphosphate formation in hippocampal astrocyte cultures. Biol Psychiatry 1996; 40: 563–567.

    CAS  PubMed  Google Scholar 

  146. Maemoto T, Finlayson K, Olverman HJ, Akahane A, Horton RW, Butcher SP . Species differences in brain adenosine A1 receptor pharmacology revealed by use of xanthine and pyrazolopyridine based antagonists. Br J Pharmacol 1997; 122: 1202–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Palmer GC . Interactions of antiepileptic drugs on adenylate cyclase and phosphodiesterases in rat and mouse cerebrum. Exp Neurol 1979; 63: 322–335.

    CAS  PubMed  Google Scholar 

  148. Palmer GC, Jones DJ, Medina MA, Stavinoha WB . Anticonvulsant drug actions on in vitro and in vivo levels of cyclic AMP in the mouse brain. Epilepsia 1979; 20: 95–104.

    CAS  PubMed  Google Scholar 

  149. Ferrendelli JA, Kinscherf DA . Inhibitory effects of anticonvulsant drugs on cyclic nucleotide accumulation in brain. Ann Neurol 1979; 5: 533–538.

    CAS  PubMed  Google Scholar 

  150. Elphick M, Taghavi Z, Powell T, Godfrey PP . Chronic carbamazepine down-regulates adenosine A2 receptors: studies with the putative selective adenosine antagonists PD115,199 and PD116,948. Psychopharmacology 1990; 100: 522–529.

    CAS  PubMed  Google Scholar 

  151. Chen G, Pan B, Hawver DB, Wright CB, Potter WZ, Manji HK . Attenuation of cyclic AMP production by carbamazepine. J Neurochem 1996; 67: 2079–2086.

    CAS  PubMed  Google Scholar 

  152. Divish MM, Sheftel G, Boyle A, Kalasapudi VD, Papolos DF, Lachman HM . Differential effect of lithium on fos protooncogene expression mediated by receptor and postreceptor activators of protein kinase C and cyclic adenosine monophosphate: model for its antimanic action. J Neurosci Res 1991; 28: 40–48.

    CAS  PubMed  Google Scholar 

  153. Ambrosio AF, Soares-Da-Silva P, Carvalho CM, Carvalho AP . Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res 2002; 27: 121–130.

    CAS  PubMed  Google Scholar 

  154. Ludvig N, Mishra PK, Jobe PC . Dibutyryl cyclic AMP has epileptogenic potential in the hippocampus of freely behaving rats: a combined EEG-intracerebral microdialysis study. Neurosci Lett 1992; 141: 187–191.

    CAS  PubMed  Google Scholar 

  155. Duman RS . Synaptic plasticity and mood disorders. Mol Psychiatry 2002; 7(Suppl 1): S29–S34.

    CAS  PubMed  Google Scholar 

  156. Manji HK, Duman RS . Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49.

    CAS  PubMed  Google Scholar 

  157. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003; 23: 7311–7316.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S . Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology (Berl) 2001; 158: 100–106.

    CAS  Google Scholar 

  159. Angelucci F, Aloe L, Jimenez-Vasquez P, Mathe AA . Lithium treatment alters brain concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat model of depression. Int J Neuropsychopharmacol 2003; 6: 225–231.

    CAS  PubMed  Google Scholar 

  160. Avissar S, Schreiber G, Aulakh CS, Wozniak KM, Murphy DL . Carbamazepine and electroconvulsive shock attenuate beta-adrenoceptor and muscarinic cholinoceptor coupling to G proteins in rat cortex. Eur J Pharmacol 1990; 189: 99–103.

    CAS  PubMed  Google Scholar 

  161. Jope RS . A bimodal model of the mechanism of action of lithium. Mol Psychiatry 1999; 4: 21–25.

    CAS  PubMed  Google Scholar 

  162. Kofman O, Li PP, Warsh JJ . Lithium, but not carbamazepine, potentiates hyperactivity induced by intra-accumbens cholera toxin. Pharmacol Biochem Behav 1998; 59: 191–200.

    CAS  PubMed  Google Scholar 

  163. Chen G, Manji HK, Wright CB, Hawver DB, Potter WZ . Effects of valproic acid on beta-adrenergic receptors, G-proteins, and adenylyl cyclase in rat C6 glioma cells. Neuropsychopharmacology 1996; 15: 271–280.

    CAS  PubMed  Google Scholar 

  164. Extein I, Tallman J, Smith CC, Goodwin FK . Changes in lymphocyte beta-adrenergic receptors in depression and mania. Psychiatry Res 1979; 1: 191–197.

    CAS  PubMed  Google Scholar 

  165. Ebstein RP, Oppenheim G, Ebstein BS, Amiri Z, Stessman J . The cyclic AMP second messenger system in man: the effects of heredity, hormones, drugs, aluminum, age and disease on signal amplification. Prog Neuropsychopharmacol Biol Psychiatry 1986; 10: 323–353.

    CAS  PubMed  Google Scholar 

  166. Wang J-F, Young LT, Li PP, Warsh JJ . Signal transduction abnormalities in bipolar disorder. In: Young LT, Joffe RT (eds). Bipolar Disorder: Biological Models and their Clinical Application. Dekker: New York, 1997 pp 41–79.

    Google Scholar 

  167. Hudson CJ, Young LT, Li PP, Warsh JJ . CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 1993; 13: 278–293.

    CAS  PubMed  Google Scholar 

  168. Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG . The interactions of adenylate cyclases with P-site inhibitors. Trends Pharmacol Sci 1999; 20: 205–210.

    CAS  PubMed  Google Scholar 

  169. Iwatsubo K, Tsunematsu T, Ishikawa Y . Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy. Expert Opin Ther Targets 2003; 7: 441–451.

    CAS  PubMed  Google Scholar 

  170. Soderling TR . CaM-kinases: modulators of synaptic plasticity. Curr Opin Neurobiol 2000; 10: 375–380.

    CAS  PubMed  Google Scholar 

  171. Manji HK, Lenox RH . Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46: 1328–1351.

    CAS  PubMed  Google Scholar 

  172. van Calker D, Belmaker RH . The high affinity inositol transport system—implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord 2000; 2: 102–107.

    CAS  PubMed  Google Scholar 

  173. Lubrich B, van Calker D . Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs? Neuropsychopharmacology 1999; 21: 519–529.

    CAS  PubMed  Google Scholar 

  174. Williams RS, Cheng L, Mudge AW, Harwood AJ . A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292–295.

    CAS  PubMed  Google Scholar 

  175. Nishizuka Y . Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    CAS  PubMed  Google Scholar 

  176. Manji HK, Bersudsky Y, Chen G, Belmaker RH, Potter WZ . Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 1996; 15: 370–381.

    CAS  PubMed  Google Scholar 

  177. Manji HK, Etcheberrigaray R, Chen G, Olds JL . Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993; 61: 2303–2310.

    CAS  PubMed  Google Scholar 

  178. Li X, Jope RS . Selective inhibition of the expression of signal transduction proteins by lithium in nerve growth factor-differentiated PC12 cells. J Neurochem 1995; 65: 2500–2508.

    CAS  PubMed  Google Scholar 

  179. Lenox RH, Watson DG, Patel J, Ellis J . Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992; 570: 333–340.

    CAS  PubMed  Google Scholar 

  180. Watson DG, Lenox RH . Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 1996; 67: 767–777.

    CAS  PubMed  Google Scholar 

  181. Chen G, Manji HK, Hawver DB, Wright CB, Potter WZ . Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro. J Neurochem 1994; 63: 2361–2364.

    CAS  PubMed  Google Scholar 

  182. Watson DG, Watterson JM, Lenox RH . Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood stabilizers. J Pharmacol Exp Ther 1998; 285: 307–316.

    CAS  PubMed  Google Scholar 

  183. Post RM, Susan R, Weiss B . Sensitization, kindling, and carbamazepine: an update on their implications for the course of affective illness. Pharmacopsychiatry 1992; 25: 41–43.

    CAS  PubMed  Google Scholar 

  184. Daigen A, Akiyama K, Itoh T, Kohira I, Sora I, Morimoto K et al. Long-lasting enhancement of the membrane-associated protein kinase C activity in the hippocampal kindled rat. Jpn J Psychiatry Neurol 1991; 45: 297–301.

    CAS  PubMed  Google Scholar 

  185. Kohira I, Akiyama K, Daigen A, Itoh T, Ono M, Morimoto K et al. Permanent increase in membrane-associated protein kinase C activity in the hippocampal kindled rat. Jpn J Psychiatry Neurol 1992; 46: 510–512.

    CAS  PubMed  Google Scholar 

  186. Osonoe K, Ogata S, Iwata Y, Mori N . Kindled amygdaloid seizures in rats cause immediate and transient increase in protein kinase C activity followed by transient suppression of the activity. Epilepsia 1994; 35: 850–854.

    CAS  PubMed  Google Scholar 

  187. Ono M, Akiyama K, Tsutsui K, Kuroda S . Differential changes in the activities of multiple protein kinase C subspecies in the hippocampal-kindled rat. Brain Res 1994; 660: 27–33.

    CAS  PubMed  Google Scholar 

  188. Akiyama K, Ono M, Kohira I, Daigen A, Ishihara T, Kuroda S . Long-lasting increase in protein kinase C activity in the hippocampus of amygdala-kindled rat. Brain Res 1995; 679: 212–220.

    CAS  PubMed  Google Scholar 

  189. Kamphuis W, Hendriksen E, Lopes da Silva FH . Isozyme specific changes in the expression of protein kinase C isozyme (alpha-zeta) genes in the hippocampus of rats induced by kindling epileptogenesis. Brain Res 1995; 702: 94–100.

    CAS  PubMed  Google Scholar 

  190. Beldhuis HJ, Everts HG, Van der Zee EA, Luiten PG, Bohus B . Amygdala kindling-induced seizures selectively impair spatial memory 1. Behavioral characteristics and effects on hippocampal neuronal protein kinase C isoforms. Hippocampus 1992; 2: 397–409.

    CAS  PubMed  Google Scholar 

  191. Chen SJ, Desai MA, Klann E, Winder DG, Sweatt JD, Conn PJ . Amygdala kindling alters protein kinase C activity in dentate gyrus. J Neurochem 1992; 59: 1761–1769.

    CAS  PubMed  Google Scholar 

  192. Buzsaki G, Hsu M, Horvath Z, Horsburgh K, Sundsmo M, Masliah E et al. Kindling-induced changes of protein kinase C levels in hippocampus and neocortex. Epilepsy Res Suppl 1992; 9: 279–283, ; discussion 283–274..

    CAS  PubMed  Google Scholar 

  193. Beldhuis HJ, De Ruiter AJ, Maes FW, Suzuki T, Bohus B . Long-term increase in protein kinase C-gamma and muscarinic acetylcholine receptor expression in the cerebral cortex of amygdala-kindled rats—a quantitative immunocytochemical study. Neuroscience 1993; 55: 965–973.

    CAS  PubMed  Google Scholar 

  194. Giambalvo CT . Protein kinase C and dopamine transport—2. Effects of amphetamine in vitro. Neuropharmacology 1992; 31: 1211–1222.

    CAS  PubMed  Google Scholar 

  195. Giambalvo CT . Protein kinase C and dopamine transport—1. Effects of amphetamine in vivo. Neuropharmacology 1992; 31: 1201–1210.

    CAS  PubMed  Google Scholar 

  196. Gnegy ME, Hong P, Ferrell ST . Phosphorylation of neuromodulin in rat striatum after acute and repeated, intermittent amphetamine. Brain Res Mol Brain Res 1993; 20: 289–298.

    CAS  PubMed  Google Scholar 

  197. Iwata SI, Hewlett GH, Ferrell ST, Kantor L, Gnegy ME . Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J Pharmacol Exp Ther 1997; 283: 1445–1452.

    CAS  PubMed  Google Scholar 

  198. Iwata S, Hewlett GH, Gnegy ME . Amphetamine increases the phosphorylation of neuromodulin and synapsin I in rat striatal synaptosomes. Synapse 1997; 26: 281–291.

    CAS  PubMed  Google Scholar 

  199. Kantor L, Gnegy ME . Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 1998; 284: 592–598.

    CAS  PubMed  Google Scholar 

  200. Steketee JD . Injection of the protein kinase inhibitor H7 into the A10 dopamine region blocks the acute responses to cocaine: behavioral and in vivo microdialysis studies. Neuropharmacology 1993; 32: 1289–1297.

    CAS  PubMed  Google Scholar 

  201. Steketee JD . Intra-A10 injection of H7 blocks the development of sensitization to cocaine. Neuroreport 1994; 6: 69–72.

    CAS  PubMed  Google Scholar 

  202. Ur E, Turner TH, Goodwin TJ, Grossman A, Besser GM . Mania in association with hydrocortisone replacement for Addison's disease. Postgrad Med J 1992; 68: 41–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Haskett RF . Diagnostic categorization of psychiatric disturbance in Cushing's syndrome. Am J Psychiatry 1985; 142: 911–916.

    CAS  PubMed  Google Scholar 

  204. Dwivedi Y, Pandey GN . Administration of dexamethasone up-regulates protein kinase C activity and the expression of gamma and epsilon protein kinase C isozymes in the rat brain. J Neurochem 1999; 72: 380–387.

    CAS  PubMed  Google Scholar 

  205. Nalepa I, Vetulani J . The responsiveness of cerebral cortical adrenergic receptors after chronic administration of atypical antidepressant mianserin. J Psychiatry Neurosci 1994; 19: 120–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Nalepa I, Chalecka-Franaszek E, Vetulani J . The antagonistic effect of separate and consecutive chronic treatment with imipramine and ECS on the inhibition of alpha 1-adrenoceptor activity by protein kinase C. Pol J Pharmacol 1993; 45: 521–532.

    CAS  PubMed  Google Scholar 

  207. Apparsundaram S, Schroeter S, Giovanetti E, Blakely RD . Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins. J Pharmacol Exp Ther 1998; 287: 744–751.

    CAS  PubMed  Google Scholar 

  208. Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD . Acute regulation of norepinephrine transport: I. protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 1998; 287: 733–743.

    CAS  PubMed  Google Scholar 

  209. Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A et al. Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry 1998; 44: 169–178.

    CAS  PubMed  Google Scholar 

  210. Zhang L, Elmer LW, Little KY . Expression and regulation of the human dopamine transporter in a neuronal cell line. Brain Res Mol Brain Res 1998; 59: 66–73.

    CAS  PubMed  Google Scholar 

  211. Bebchuk JM, Arfken CL, Dolan-Manji S, Murphy J, Hasanat K, Manji HK . A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry 2000; 57: 95–97.

    CAS  PubMed  Google Scholar 

  212. Horgan K, Cooke E, Hallett MB, Mansel RE . Inhibition of protein kinase C mediated signal transduction by tamoxifen. Importance for antitumour activity. Biochem Pharmacol 1986; 35: 4463–4465.

    CAS  PubMed  Google Scholar 

  213. O'Brian CA, Housey GM, Weinstein IB . Specific and direct binding of protein kinase C to an immobilized tamoxifen analogue. Cancer Res 1988; 48: 3626–3629.

    CAS  PubMed  Google Scholar 

  214. Frank RN . Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. Am J Ophthalmol 2002; 133: 693–698.

    CAS  PubMed  Google Scholar 

  215. Wheeler GD . Ruboxistaurin (Eli Lilly). IDrugs 2003; 6: 159–163.

    CAS  PubMed  Google Scholar 

  216. Aiello LP . The potential role of PKC beta in diabetic retinopathy and macular edema. Surv Ophthalmol 2002; 47(Suppl 2): S263–S269.

    PubMed  Google Scholar 

  217. Parker PJ . Inhibition of protein kinase C–do we, can we, and should we? Pharmacol Ther 1999; 82: 263–267.

    CAS  PubMed  Google Scholar 

  218. Du J, Gould TD, Manji HK . Neurotrophic signaling in mood disorders. In: Finkel T, Gutkind JS (eds). Signal Transduction and Human Disease. John Wiley & Sons, Inc.: Hoboken, NJ, 2003 pp 411–446.

    Google Scholar 

  219. Trentani A, Ter Horst GJ, Kuipers SD, Den Boer JA . Selective chronic stress-induced in vivo accumulation of phospho-ERK1/2 in prefrontal dendrites: implications for stress-related cortical pathology? Eur J Neurosci 2002; 15: 1681–1691.

    CAS  PubMed  Google Scholar 

  220. DeVries AC, Joh HD, Bernard O, Hattori K, Hurn PD, Traystman RJ et al. Social stress exacerbates stroke outcome by suppressing Bcl-2 expression. Proc Natl Acad Sci USA 2001; 98: 11824–11828.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G . The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001; 276: 31674–31683.

    CAS  PubMed  Google Scholar 

  222. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72: 879–882.

    CAS  PubMed  Google Scholar 

  223. Manji HK, Chen G . PKC MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 2002; 7(Suppl 1): S46–56.

    CAS  PubMed  Google Scholar 

  224. Chen G, Huang LD, Zeng WZ, Manji HK . Mood stabilizers regulate cytoprotective and mRNA-binding proteins in the brain: long-term effects on cell survival and transcript stability. Int J Neuropsychopharmacol 2001; 4: 47–64.

    CAS  PubMed  Google Scholar 

  225. Rajkowska G . Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits? Prog Brain Res 2000; 126: 397–412.

    CAS  PubMed  Google Scholar 

  226. Huang X, Wu DY, Chen G, Manji H, Chen DF . Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest Ophthalmol Vis Sci 2003; 44: 347–354.

    PubMed  Google Scholar 

  227. Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang DM . Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 2002; 43: 1173–1179.

    CAS  PubMed  Google Scholar 

  228. Bruno V, Sortino MA, Scapagnini U, Nicoletti F, Canonico PL . Antidegenerative effects of Mg(2+)-valproate in cultured cerebellar neurons. Funct Neurol 1995; 10: 121–130.

    CAS  PubMed  Google Scholar 

  229. Mark RJ, Ashford JW, Goodman Y, Mattson MP . Anticonvulsants attenuate amyloid beta-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol Aging 1995; 16: 187–198.

    CAS  PubMed  Google Scholar 

  230. Manji HK, Moore GJ, Chen G . Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry 2000; 48: 740–754.

    CAS  PubMed  Google Scholar 

  231. Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang DM . Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 2002; 80: 589–597.

    CAS  PubMed  Google Scholar 

  232. Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    CAS  PubMed  Google Scholar 

  233. Bowley MP, Drevets WC, Ongur D, Price JL . Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 2002; 52: 404–412.

    PubMed  Google Scholar 

  234. Tsai G, Coyle JT . N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 1995; 46: 531–540.

    CAS  PubMed  Google Scholar 

  235. Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2's neurotrophic effects? Biol Psychiatry 2000; 48: 1–8.

    CAS  PubMed  Google Scholar 

  236. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK . Lithium-induced increase in human brain grey matter. Lancet 2000; 356: 1241–1242.

    CAS  PubMed  Google Scholar 

  237. Sassi R, Nicoletti M, Brambilla P, Mallinger A, Frank E, Kupfer D et al. Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett 2002; 329: 243.

    CAS  PubMed  Google Scholar 

  238. Silverstone PH, Wu RH, O'Donnell T, Ulrich M, Asghar SJ, Hanstock CC . Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetyl-aspartate concentrations in euthymic bipolar patients. Int Clin Psychopharmacol 2003; 18: 73–79.

    PubMed  Google Scholar 

  239. Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B . Neurotrophic effects of electroconvulsive therapy: a proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 2003; 28: 720–725.

    CAS  PubMed  Google Scholar 

  240. Deigner HP, Haberkorn U, Kinscherf R . Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opin Investig Drugs 2000; 9: 747–764.

    CAS  PubMed  Google Scholar 

  241. Ochs G, Penn RD, York M, Giess R, Beck M, Tonn J et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1: 201–206.

    CAS  PubMed  Google Scholar 

  242. Takata K, Kitamura Y, Kakimura J, Kohno Y, Taniguchi T . Increase of bcl-2 protein in neuronal dendritic processes of cerebral cortex and hippocampus by the antiparkinsonian drugs, talipexole and pramipexole. Brain Res 2000; 872: 236–241.

    CAS  PubMed  Google Scholar 

  243. Sporn J, Ghaemi SN, Sambur MR, Rankin MA, Recht J, Sachs GS et al. Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. Ann Clin Psychiatry 2000; 12: 137–140.

    CAS  PubMed  Google Scholar 

  244. Zarate Jr CA, Payne JL, Singh J, Quiroz J, Luckenbaugh, Denicoff KD et al. Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psych, in press.

  245. Goldberg JF, Burdick KE, Endick CJ . A preliminary randomized, double-blind, placebo-controlled trial of primapexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry 2004; 161: 564–566.

    PubMed  Google Scholar 

  246. Axelrod J, Burch RM, Jelsema CL . Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci 1988; 11: 117–123.

    CAS  PubMed  Google Scholar 

  247. Rapoport SI . In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 2001; 16: 243–261, ; discussion 279–284..

    CAS  PubMed  Google Scholar 

  248. Axelrod J . Phospholipase A2 and G proteins. Trends Neurosci 1995; 18: 64–65.

    CAS  PubMed  Google Scholar 

  249. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI . Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 2001; 77: 796–803.

    CAS  PubMed  Google Scholar 

  250. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI . Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 1996; 220: 171–174.

    CAS  PubMed  Google Scholar 

  251. Rapoport SI, Bosetti F . Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 2002; 59: 592–596.

    CAS  PubMed  Google Scholar 

  252. Chang MC, Jones CR . Chronic lithium treatment decreases brain phospholipase A2 activity. Neurochem Res 1998; 23: 887–892.

    CAS  PubMed  Google Scholar 

  253. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA et al. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 1999; 10: 3887–3890.

    CAS  PubMed  Google Scholar 

  254. Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI et al. Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 2002; 7: 845–850.

    CAS  PubMed  Google Scholar 

  255. Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI . Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 2003; 85: 690–696.

    CAS  PubMed  Google Scholar 

  256. Ross BM, Brooks RJ, Lee M, Kalasinsky KS, Vorce SP, Seeman M et al. Cyclooxygenase inhibitor modulation of dopamine-related behaviours. Eur J Pharmacol 2002; 450: 141–151.

    CAS  PubMed  Google Scholar 

  257. Reid MS, Ho LB, Hsu K, Fox L, Tolliver BK, Adams JU et al. Evidence for the involvement of cyclooxygenase activity in the development of cocaine sensitization. Pharmacol Biochem Behav 2002; 71: 37–54.

    CAS  PubMed  Google Scholar 

  258. Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Fernandez AP, Rodrigo J et al. Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology 2003; 28: 1579–1588.

    CAS  PubMed  Google Scholar 

  259. Soares J, Bowden C . March treatment trial grant. Stanley Medical Institute 2002; www.stanleyresearch.org.

  260. Applebaum J, Levine J, Belmaker RH . Intravenous fosphenytoin in acute mania. J Clin Psychiatry 2003; 64: 408–409.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the Intramural Research Program of the National Institute of Mental Heath and the Stanley Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, T., Quiroz, J., Singh, J. et al. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 9, 734–755 (2004). https://doi.org/10.1038/sj.mp.4001518

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001518

Keywords

This article is cited by

Search

Quick links