Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited

Abstract

Inositol, a simple six-carbon sugar, forms the basis of a number of important intracellular signaling molecules. Over the last 35 years, a series of biochemical and cell biological experiments have shown that lithium (Li+) reduces the cellular concentration of myo-inositol and as a consequence attenuates signaling within the cell. Based on these observations, inositol-depletion was proposed as a therapeutic mechanism in the treatment of bipolar mood disorder. Recent results have added significant new dimensions to the original hypothesis. However, despite a number of clinical studies, this hypothesis still remains to be either proven or refuted. In this review of our current knowledge, I will consider where the inositol-depletion hypothesis stands today and how it may be further investigated in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Berridge MJ, Downes CP, Hanley MR . Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989; 59: 411–419.

    Article  CAS  PubMed  Google Scholar 

  2. Harwood AJ, Agam G . Search for a common mechanism of mood stabilizers. Biochem Pharmacol 2003; 66: 179–189.

    Article  CAS  PubMed  Google Scholar 

  3. Allison JH, Stewart MA . Reduced brain inositol in lithium-treated rats. Nat New Biol 1971; 233: 267–268.

    Article  CAS  PubMed  Google Scholar 

  4. Allison JH, Blisner ME, Holland WH, Hipps PP, Sherman WR . Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem Biophys Res Commun 1976; 71: 664–670.

    Article  CAS  PubMed  Google Scholar 

  5. Naccarato WF, Ray RE, Wells WW . Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch Biochem Biophys 1974; 164: 194–201.

    Article  CAS  PubMed  Google Scholar 

  6. Hallcher LM, Sherman WR . The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255: 10896–10901.

    CAS  PubMed  Google Scholar 

  7. Atack JR, Broughton HB, Pollack SJ . Structure and mechanism of inositol monophosphatase. FEBS Lett 1995; 361: 1–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mikoshiba K . Inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 1993; 14: 86–89.

    Article  CAS  PubMed  Google Scholar 

  9. Shears SB . How versatile are inositol phosphate kinases? Biochem J 2004; 377: 265–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisher SK, Novak JE, Agranoff BW . Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 2002; 82: 736–754.

    Article  CAS  PubMed  Google Scholar 

  11. Inhorn RC, Majerus PW . Inositol polyphosphate 1-phosphatase from calf brain. Purification and inhibition by Li+, Ca2+, and Mn2+. J Biol Chem 1987; 262: 15946–15952.

    CAS  PubMed  Google Scholar 

  12. Emilien G, Maloteaux JM, Seghers A, Charles G . Lithium compared to valproic acid and carbamazepine in the treatment of mania: a statistical meta-analysis. Eur Neuropsychopharmacol 1996; 6: 245–252.

    Article  CAS  PubMed  Google Scholar 

  13. O'Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH . Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 2000; 880: 84–91.

    Article  CAS  PubMed  Google Scholar 

  14. Vaden DL, Ding D, Peterson B, Greenberg ML . Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 2001; 276: 15466–15471.

    Article  CAS  PubMed  Google Scholar 

  15. Williams RS, Cheng L, Mudge AW, Harwood AJ . A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417: 292–295.

    Article  CAS  PubMed  Google Scholar 

  16. Shamir A, Shaltiel G, Greenberg ML, Belmaker RH, Agam G . The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Brain Res Mol Brain Res 2003; 115: 104–110.

    Article  CAS  PubMed  Google Scholar 

  17. Williams RS, Eames M, Ryves WJ, Viggars J, Harwood AJ . Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J 1999; 18: 2734–2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M et al. Valproate decreases inositol biosynthesis. Biol Psychiatry 2004 (in press).

  19. Schulz I, Gerhartz B, Neubauer A, Holloschi A, Heiser U, Hafner M et al. Modulation of inositol 1,4,5-triphosphate concentration by prolyl endopeptidase inhibition. Eur J Biochem 2002; 269: 5813–5820.

    Article  CAS  PubMed  Google Scholar 

  20. Eickholt BJ, Williams RSB, Harwood AJ . Mood stabilizers and the cell biology of neuronal growth cones. Clin Neurosci Res 2004 (in press).

  21. Emilien G, Maloteaux JM, Seghers A, Charles G . Lithium therapy in the treatment of manic-depressive illness. Present status and future perspectives. A critical review. Arch Int Pharmacodyn Ther 1995; 330: 251–278.

    CAS  PubMed  Google Scholar 

  22. Shaltiel G, Dalton E, Belmaker RH, Harwood AJ, Agam G . Specificity of mood stabilizer action on neuronal growth cones. (ms submitted). 2004.

  23. van Calker D, Belmaker RH . The high affinity inositol transport system—implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord 2000; 2: 102–107.

    Article  CAS  PubMed  Google Scholar 

  24. Inoue K, Shimada S, Minami Y, Morimura H, Miyai A, Yamauchi A et al. Cellular localization of Na+/MYO-inositol co-transporter mRNA in the rat brain. Neuroreport 1996; 7: 1195–1198.

    Article  CAS  PubMed  Google Scholar 

  25. Lubrich B, Spleiss O, Gebicke-Haerter PJ, van Calker D . Differential expression, activity and regulation of the sodium/myo-inositol cotransporter in astrocyte cultures from different regions of the rat brain. Neuropharmacology 2000; 39: 680–690.

    Article  CAS  PubMed  Google Scholar 

  26. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B . Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. EMBO J 2001; 20: 4467–4477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uldry M, Steiner P, Zurich MG, Beguin P, Hirling H, Dolci W et al. Regulated exocytosis of an H(+)/myo-inositol symporter at synapses and growth cones. EMBO J 2004; 23: 531–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolfson M, Bersudsky Y, Zinger E, Simkin M, Belmaker RH, Hertz L . Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Res 2000; 855: 158–161.

    Article  CAS  PubMed  Google Scholar 

  29. Wolfson M, Hertz E, Belmaker RH, Hertz L . Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms. Brain Res 1998; 787: 34–40.

    Article  CAS  PubMed  Google Scholar 

  30. Berry GT, Wu S, Buccafusca R, Ren J, Gonzales LW, Ballard PL et al. Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem 2003; 278: 18297–18302.

    Article  CAS  PubMed  Google Scholar 

  31. Berry GT, Buccafusca R, Greer JJ, Eccleston E . Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain. Mol Genet Metab 2004; 82: 87–92.

    Article  CAS  PubMed  Google Scholar 

  32. Berry GT, Wang ZJ, Dreha SF, Finucane BM, Zimmerman RA . In vivo brain myo-inositol levels in children with Down syndrome. J Pediatr 1999; 135: 94–97.

    Article  CAS  PubMed  Google Scholar 

  33. Atack JR, Broughton HB, Pollack SJ . Inositol monophosphatase—a putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 1995; 18: 343–349.

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Coronado JM, Belles JM, Lesage F, Serrano R, Rodriguez PL . A novel mammalian lithium-sensitive enzyme with a dual enzymatic activity, 3′-phosphoadenosine 5′-phosphate phosphatase and inositol-polyphosphate 1-phosphatase. J Biol Chem 1999; 274: 16034–16039.

    Article  CAS  PubMed  Google Scholar 

  35. Miyamoto R, Sugiura R, Kamitani S, Yada T, Lu Y, Sio SO et al. Tol1, a fission yeast phosphomonoesterase, is an in vivo target of lithium, and its deletion leads to sulfite auxotrophy. J Bacteriol 2000; 182: 3619–3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ray Jr WJ, Post CB, Puvathingal JM . Comparison of rate constants for (PO3−) transfer by the Mg(II), Cd(II), and Li(I) forms of phosphoglucomutase. Biochemistry 1989; 28: 559–569.

    Article  CAS  PubMed  Google Scholar 

  37. Masuda CA, Xavier MA, Mattos KA, Galina A, Montero-Lomeli M . Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 2001; 276: 37794–37801.

    CAS  PubMed  Google Scholar 

  38. Pang H, Koda Y, Soejima M, Kimura H . Identification of human phosphoglucomutase 3 (PGM3) as N-acetylglucosamine-phosphate mutase (AGM1). Ann Hum Genet 2002; 66: 139–144.

    Article  CAS  PubMed  Google Scholar 

  39. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woodgett JR . Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 1990; 9: 2431–2438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryves WJ, Harwood AJ . Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 2001; 280: 720–725.

    Article  CAS  PubMed  Google Scholar 

  42. Ryves WJ, Dajani R, Pearl L, Harwood AJ . Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem Biophys Res Commun 2002; 290: 967–972.

    Article  CAS  PubMed  Google Scholar 

  43. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J . Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 2001; 20: 27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. King TD, Bijur GN, Jope RS . Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res 2001; 919: 106–114.

    Article  CAS  PubMed  Google Scholar 

  45. Bijur GN, De Sarno P, Jope RS . Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem 2000; 275: 7583–7590.

    Article  CAS  PubMed  Google Scholar 

  46. Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K . Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc Natl Acad Sci USA 1993; 90: 7789–7793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takashima A, Noguchi K, Michel G, Mercken M, Hoshi M, Ishiguro K et al. Exposure of rat hippocampal neurons to amyloid beta peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci Lett 1996; 203: 33–36.

    Article  CAS  PubMed  Google Scholar 

  48. Harwood AJ . Signal transduction: Life, the universe and development. Curr Biol 2000; 10: R116–R119.

    Article  CAS  PubMed  Google Scholar 

  49. Pap M, Cooper GM . Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 1998; 273: 19929–19932.

    Article  CAS  PubMed  Google Scholar 

  50. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA 2000; 97: 11074–11079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 2000; 7: 793–803.

    Article  CAS  PubMed  Google Scholar 

  52. Eickholt BJ, Walsh FS, Doherty P . An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J Cell Biol 2002; 157: 211–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nusse R (2004); http://www.stanford.edu/~rnusse/wntwindow.html.

  54. Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC . Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 1998; 111: 1351–1361.

    CAS  PubMed  Google Scholar 

  55. Ciani L, Krylova O, Smalley MJ, Dale TC, Salinas PC . A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol 2004; 164: 243–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garrity PA . Developmental biology: how neurons avoid derailment. Nature 2003; 422: 570–571.

    Article  CAS  PubMed  Google Scholar 

  57. He X . Wnt signaling went derailed again: a new track via the LIN-18 receptor? Cell 2004; 118: 668–670.

    Article  CAS  PubMed  Google Scholar 

  58. Lu W, Yamamoto V, Ortega B, Baltimore D . Mammalian ryk is a wnt coreceptor required for stimulation of neurite outgrowth. Cell 2004; 119: 97–108.

    Article  CAS  PubMed  Google Scholar 

  59. O'Brien WT, Harper AD, Jove F, Woodgett JR, Maretto S, Piccolo S et al. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 2004; 24: 6791–6798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gould TD, Einat H, Bhat R, Manji HK . AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 2004; 1–4.

  61. Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H . Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 2004; 55: 781–784.

    Article  CAS  PubMed  Google Scholar 

  62. Chen G, Huang LD, Jiang YM, Manji HK . The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 1999; 72: 1327–1330.

    Article  CAS  PubMed  Google Scholar 

  63. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741.

    Article  CAS  PubMed  Google Scholar 

  64. Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 2002; 20: 257–270.

    Article  CAS  PubMed  Google Scholar 

  65. De Sarno P, Li X, Jope RS . Regulation of Akt and glycogen synthase kinase-3beta phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43: 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  66. Allison JH, Boshans RL, Hallcher LM, Packman PM, Sherman WR . The effects of lithium on myo-inositol levels in layers of frontal cerebral cortex, in cerebellum, and in corpus callosum of the rat. J Neurochem 1980; 34: 456–458.

    Article  CAS  PubMed  Google Scholar 

  67. Sherman WR, Leavitt AL, Honchar MP, Hallcher LM, Phillips BE . Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J Neurochem 1981; 36: 1947–1951.

    Article  CAS  PubMed  Google Scholar 

  68. Lee CH, Dixon JF, Reichman M, Moummi C, Los G, Hokin LE . Li+ increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse and rat. The increases require inositol supplementation in mouse and rat but not in guinea pig. Biochem J 1992; 282(Part 2): 377–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dixon JF, Hokin LE . Lithium stimulates accumulation of second-messenger inositol 1,4,5-trisphosphate and other inositol phosphates in mouse pancreatic minilobules without inositol supplementation. Biochem J 1994; 304(Part 1): 251–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hokin LE, Dixon JF, Los GV . A novel action of lithium: stimulation of glutamate release and inositol 1,4,5 trisphosphate accumulation via activation of the N-methyl D-aspartate receptor in monkey and mouse cerebral cortex slices. Adv Enzyme Regul 1996; 36: 229–244.

    Article  CAS  PubMed  Google Scholar 

  71. Sullivan NR, Burke T, Siafaka-Kapadai A, Javors M, Hensler JG . Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells. J Neurochem 2004; 90: 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  72. Kofman O, Belmaker RH . Intracerebroventricular myo-inositol antagonizes lithium-induced suppression of rearing behaviour in rats. Brain Res 1990; 534: 345–347.

    Article  CAS  PubMed  Google Scholar 

  73. Kofman O, Belmaker RH, Grisaru N, Alpert C, Fuchs I, Katz V et al. Myo-inositol attenuates two specific behavioral effects of acute lithium in rats. Psychopharmacol Bull 1991; 27: 185–190.

    CAS  PubMed  Google Scholar 

  74. Kato T, Inubushi T, Kato N . Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 1998; 10: 133–147.

    Article  CAS  PubMed  Google Scholar 

  75. Kato T, Shioiri T, Takahashi S, Inubushi T . Measurement of brain phosphoinositide metabolism in bipolar patients using in vivo 31P-MRS. J Affect Disord 1991; 22: 185–190.

    Article  CAS  PubMed  Google Scholar 

  76. Shimon H, Agam G, Belmaker RH, Hyde TM, Kleinman JE . Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patients with bipolar disorder. Am J Psychiatry 1997; 154: 1148–1150.

    Article  CAS  PubMed  Google Scholar 

  77. Moore CM, Breeze JL, Gruber SA, Babb SM, Frederick BB, Villafuerte RA et al. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disord 2000; 2: 207–216.

    Article  CAS  PubMed  Google Scholar 

  78. Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M et al. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 2001; 24: 359–369.

    Article  CAS  PubMed  Google Scholar 

  79. Shapiro J, Belmaker RH, Biegon A, Seker A, Agam G . Scyllo-inositol in post-mortem brain of bipolar, unipolar and schizophrenic patients. J Neural Transm 2000; 107: 603–607.

    Article  CAS  PubMed  Google Scholar 

  80. Silverstone PH, Wu RH, O'Donnell T, Ulrich M, Asghar SJ, Hanstock CC . Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum Psychopharmacol 2002; 17: 321–327.

    Article  CAS  PubMed  Google Scholar 

  81. Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry 2004; 56: 340–348.

    Article  CAS  PubMed  Google Scholar 

  82. Belmaker RH, Shapiro J, Vainer E, Nemanov L, Ebstein RP, Agam G . Reduced inositol content in lymphocyte-derived cell lines from bipolar patients. Bipolar Disord 2002; 4: 67–69.

    Article  CAS  PubMed  Google Scholar 

  83. Banks RE, Aiton JF, Cramb G, Naylor GJ . Incorporation of inositol into the phosphoinositides of lymphoblastoid cell lines established from bipolar manic-depressive patients. J Affect Disord 1990; 19: 1–8.

    Article  CAS  PubMed  Google Scholar 

  84. Soares JC, Mallinger AG, Dippold CS, Forster Wells K, Frank E, Kupfer DJ . Effects of lithium on platelet membrane phosphoinositides in bipolar disorder patients: a pilot study. Psychopharmacology (Berlin) 2000; 149: 12–16.

    Article  CAS  Google Scholar 

  85. Morain P, Lestage P, De Nanteuil G, Jochemsen R, Robin JL, Guez D et al. S 17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev 2002; 8: 31–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shinoda M, Miyazaki A, Toide K . Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on spatial memory and on cholinergic and peptidergic neurons in rats with ibotenate-induced lesions of the nucleus basalis magnocellularis. Behav Brain Res 1999; 99: 17–25.

    Article  CAS  PubMed  Google Scholar 

  87. Toide K, Iwamoto Y, Fujiwara T, Abe H . JTP-4819: a novel prolyl endopeptidase inhibitor with potential as a cognitive enhancer. J Pharmacol Exp Ther 1995; 274: 1370–1378.

    CAS  PubMed  Google Scholar 

  88. Shishido Y, Furushiro M, Tanabe S, Nishiyama S, Hashimoto S, Ohno M et al. ZTTA, a postproline cleaving enzyme inhibitor, improves cerebral ischemia-induced deficits in a three-panel runway task in rats. Pharmacol Biochem Behav 1996; 55: 333–338.

    Article  CAS  PubMed  Google Scholar 

  89. Maes M, Goossens F, Scharpe S, Meltzer HY, D'Hondt P, Cosyns P . Lower serum prolyl endopeptidase enzyme activity in major depression: further evidence that peptidases play a role in the pathophysiology of depression. Biol Psychiatry 1994; 35: 545–552.

    Article  CAS  PubMed  Google Scholar 

  90. Maes M, Goossens F, Scharpe S, Calabrese J, Desnyder R, Meltzer HY . Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res 1995; 58: 217–225.

    Article  CAS  PubMed  Google Scholar 

  91. Breen G, Harwood AJ, Gregory K, Sinclair M, Collier D, St Clair D et al. Two peptidase activities decrease in treated bipolar disorder not schizophrenic patients. Bipolar Disord 2004; 6: 156–161.

    Article  CAS  PubMed  Google Scholar 

  92. Majerus PW . Inositol phosphate biochemistry. Annu Rev Biochem 1992; 61: 225–250.

    Article  CAS  PubMed  Google Scholar 

  93. Gould E, Gross CG . Neurogenesis in adult mammals: some progress and problems. J Neurosci 2002; 22: 619–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Renshaw PF, Wicklund S . In vivo measurement of lithium in humans by nuclear magnetic resonance spectroscopy. Biol Psychiatry 1988; 23: 465–475.

    Article  CAS  PubMed  Google Scholar 

  95. Andreopoulos S, Wasserman M, Woo K, Li PP, Warsh JJ . Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. Pharmacogenomics J 2004; 4: 365–373.

    Article  CAS  PubMed  Google Scholar 

  96. Wasserman MJ, Corson TW, Sibony D, Cooke RG, Parikh SV, Pennefather PS et al. Chronic lithium treatment attenuates intracellular calcium mobilization. Neuropsychopharmacology 2004; 29: 759–769.

    Article  CAS  PubMed  Google Scholar 

  97. Mellor H, Parker PJ . The extended protein kinase C superfamily. Biochem J 1998; 332(Part 2): 281–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nishizuka Y . Membrane phospholipid degradation and protein kinase C for cell signaling. Neurosci Res 1992; 15: 3–5.

    Article  CAS  PubMed  Google Scholar 

  99. Wang HY, Johnson GP, Friedman E . Lithium treatment inhibits protein kinase C translocation in rat brain cortex. Psychopharmacology (Berlin) 2001; 158: 80–86.

    Article  CAS  Google Scholar 

  100. Wang H, Friedman E . Increased association of brain protein kinase C with the receptor for activated C kinase-1 (RACK1) in bipolar affective disorder. Biol Psychiatry 2001; 50: 364–370.

    Article  CAS  PubMed  Google Scholar 

  101. Lenox RH, Watson DG, Patel J, Ellis J . Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992; 570: 333–340.

    Article  CAS  PubMed  Google Scholar 

  102. Manji HK, Lenox RH . Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46: 1328–1351.

    Article  CAS  PubMed  Google Scholar 

  103. Watson DG, Lenox RH . Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 1996; 67: 767–777.

    Article  CAS  PubMed  Google Scholar 

  104. Pacheco MA, Jope RS . Modulation of carbachol-stimulated AP-1 DNA binding activity by therapeutic agents for bipolar disorder in human neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 1999; 72: 138–146.

    Article  CAS  PubMed  Google Scholar 

  105. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991; 64: 573–584.

    Article  CAS  PubMed  Google Scholar 

  106. Manji HK, Moore GJ, Chen G . Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilizers. Br J Psychiatry Suppl 2001; 41: s107–s119.

    Article  CAS  PubMed  Google Scholar 

  107. York JD, Odom AR, Murphy R, Ives EB, Wente SR . A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 1999; 285: 96–100.

    Article  CAS  PubMed  Google Scholar 

  108. Shen X, Xiao H, Ranallo R, Wu WH, Wu C . Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 2003; 299: 112–114.

    Article  CAS  PubMed  Google Scholar 

  109. Steger DJ, Haswell ES, Miller AL, Wente SR, O'Shea EK . Regulation of chromatin remodeling by inositol polyphosphates. Science 2003; 299: 114–116.

    Article  CAS  PubMed  Google Scholar 

  110. Rando OJ, Chi TH, Crabtree GR . Second messenger control of chromatin remodeling. Nat Struct Biol 2003; 10: 81–83.

    Article  CAS  PubMed  Google Scholar 

  111. Mora A, Komander D, van Aalten DM, Alessi DR . PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 2004; 15: 161–170.

    Article  CAS  PubMed  Google Scholar 

  112. Levchenko A, Iglesias PA . Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 2002; 82: 50–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van Horck FP, Lavazais E, Eickholt BJ, Moolenaar WH, Divecha N . Essential role of type I(alpha) phosphatidylinositol 4-phosphate 5-kinase in neurite remodeling. Curr Biol 2002; 12: 241–245.

    Article  CAS  PubMed  Google Scholar 

  114. Yamazaki M, Miyazaki H, Watanabe H, Sasaki T, Maehama T, Frohman MA et al. Phosphatidylinositol 4-phosphate 5-kinase is essential for ROCK-mediated neurite remodeling. J Biol Chem 2002; 277: 17226–17230.

    Article  CAS  PubMed  Google Scholar 

  115. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD . A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2: 287–293.

    Article  CAS  PubMed  Google Scholar 

  116. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004; 427: 740–744.

    Article  CAS  PubMed  Google Scholar 

  117. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  118. Williams R, Ryves JW, Dalton EC, Eickholt B, Shaltiel G, Agam G et al. A molecular cell biology of lithium. Biochem Soc Trans 2004; 32: 799–802.

    Article  CAS  PubMed  Google Scholar 

  119. Harrison PJ . The neuropathology of primary mood disorder. Brain 2002; 125: 1428–1449.

    Article  PubMed  Google Scholar 

  120. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AJH is supported by a Wellcome Senior Biomedical Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Harwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harwood, A. Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatry 10, 117–126 (2005). https://doi.org/10.1038/sj.mp.4001618

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001618

Keywords

This article is cited by

Search

Quick links