Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Lilly-Molecular Psychiatry Award Honorable Mention
  • Published:

Lilly-Molecular Psychiatry Award Honorable Mention

Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia

Abstract

We previously performed a genome-wide linkage scan in Portuguese schizophrenia families that identified a risk locus on chromosome 5q31–q35. This finding was supported by meta-analysis of 20 other schizophrenia genome-wide scans that identified 5q23.2–q34 as the second most compelling susceptibility locus in the genome. In the present report, we took a two-stage candidate gene association approach to investigate a group of gamma-aminobutyric acid (GABA) A receptor subunit genes (GABRA1, GABRA6, GABRB2, GABRG2, and GABRP) within our linkage peak. These genes are plausible candidates based on prior evidence for GABA system involvement in schizophrenia. In the first stage, associations were detected in a Portuguese patient sample with single nucleotide polymorphisms (SNPs) and haplotypes in GABRA1 (P=0.00062–0.048), GABRP (P=0.0024–0.042), and GABRA6 (P=0.0065–0.0088). The GABRA1 and GABRP findings were replicated in the second stage in an independent German family-based sample (P=0.0015–0.043). Supportive evidence for association was also obtained for a previously reported GABRB2 risk haplotype. Exploratory analyses of the effects of associated GABRA1 haplotypes on transcript levels found altered expression of GABRA6 and coexpressed genes of GABRA1 and GABRB2. Comparison of transcript levels in schizophrenia patients and unaffected siblings found lower patient expression of GABRA6 and coexpressed genes of GABRA1. Interestingly, the GABRA1 coexpressed genes include synaptic and vesicle-associated genes previously found altered in schizophrenia prefrontal cortex. Taken together, these results support the involvement of the chromosome 5q GABAA receptor gene cluster in schizophrenia, and suggest that schizophrenia-associated haplotypes may alter expression of GABA-related genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kendler KS . Schizophrenia genetics. In: Sadock J, Sadock VA (eds). Kaplan and Sadock's Comprehensive Textbook of Psychiatry. Lippincott, Williams and Wilkins: Philadelphia, 2000.

    Google Scholar 

  2. Owen MJ, O'Donovan MC, Gottesman II . Schizophrenia. In: McGuffin P, Owen M, Gottesman II (eds) Psychiatric Genetics and Genomics. Oxford University Press: Oxford, 2002, pp 247–256.

    Google Scholar 

  3. Abecasis GR, Burt RA, Hall D, Bochum S, Doheny KF, Lundy SL et al. Genomewide scan in families with schizophrenia from the founder population of Afrikaners reveals evidence for linkage and uniparental disomy on chromosome 1. Am J Hum Genet 2004; 74: 403–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. JSSLG. Initial genome-wide scan for linkage with schizophrenia in the Japanese Schizophrenia Sib-Pair Linkage Group (JSSLG) families. Am J Med Genet 2003; 120B: 22–28.

  5. Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R et al. Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology 2000; 42: 175–182.

    Article  CAS  PubMed  Google Scholar 

  6. Barr CL, Kennedy JL, Pakstis AJ, Wetterberg L, Sjogren B, Bierut L et al. Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred. Am J Med Genet 1994; 54: 51–58.

    Article  CAS  PubMed  Google Scholar 

  7. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  8. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Camp NJ, Neuhausen SL, Tiobech J, Polloi A, Coon H, Myles-Worsley M . Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov-chain Monte Carlo method. Am J Hum Genet 2001; 69: 1278–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet 1994; 54: 59–71.

    Article  CAS  PubMed  Google Scholar 

  11. Coon H, Myles-Worsley M, Tiobech J, Hoff M, Rosenthal J, Bennett P et al. Evidence for a chromosome 2p13–14 schizophrenia susceptibility locus in families from Palau, Micronesia. Mol Psychiatry 1998; 3: 521–527.

    Article  CAS  PubMed  Google Scholar 

  12. DeLisi LE, Mesen A, Rodriguez C, Bertheau A, LaPrade B, Llach M et al. Genome-wide scan for linkage to schizophrenia in a Spanish-origin cohort from Costa Rica. Am J Med Genet 2002; 114: 497–508.

    Article  PubMed  Google Scholar 

  13. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  14. Devlin B, Bacanu SA, Roeder K, Reimherr F, Wender P, Galke B et al. Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 2002; 7: 689–694.

    Article  CAS  PubMed  Google Scholar 

  15. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD et al. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000; 9: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  16. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D et al. Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet 2003; 73: 601–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998; 81: 290–295.

    Article  CAS  PubMed  Google Scholar 

  18. Garver DL, Holcomb J, Mapua FM, Wilson R, Barnes B . Schizophrenia spectrum disorders: an autosomal-wide scan in multiplex pedigrees. Schizophr Res 2001; 52: 145–160.

    Article  CAS  PubMed  Google Scholar 

  19. Gurling H, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo B et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  22. Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, Kohn Y et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry 2003; 8: 488–498.

    Article  CAS  PubMed  Google Scholar 

  23. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  24. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  26. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2004; 10: 486–499.

    Article  CAS  Google Scholar 

  27. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    Article  CAS  PubMed  Google Scholar 

  28. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  29. Rees MI, Fenton I, Williams NM, Holmans P, Norton N, Cardno A et al. Autosome search for schizophrenia susceptibility genes in multiply affected families. Mol Psychiatry 1999; 4: 353–359.

    Article  CAS  PubMed  Google Scholar 

  30. Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6 [In Process Citation]. Mol Psychiatry 2000; 5: 638–649.

    Article  CAS  PubMed  Google Scholar 

  31. Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J et al. A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet 1998; 81: 364–376.

    Article  CAS  PubMed  Google Scholar 

  32. Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C et al. Genome-wide scan in Portuguese Island families identifies 5q31–5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004; 9: 213–218.

    Article  CAS  PubMed  Google Scholar 

  33. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    Article  CAS  PubMed  Google Scholar 

  35. Wijsman EM, Rosenthal EA, Hall D, Blundell ML, Sobin C, Heath SC et al. Genome-wide scan in a large complex pedigree with predominantly male schizophrenics from the island of Kosrae: evidence for linkage to chromosome 2q. Mol Psychiatry 2003; 8: 695–705, 643.

    Article  CAS  PubMed  Google Scholar 

  36. Williams NM, Rees MI, Holmans P, Norton N, Cardno AG, Jones LA et al. A two-stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs. Hum Mol Genet 1999; 8: 1729–1739.

    Article  CAS  PubMed  Google Scholar 

  37. Williams NM, Norton N, Williams H, Ekholm B, Hamshere ML, Lindblom Y et al. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am J Hum Genet 2003; 73: 1355–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steiger JL, Russek SJ . GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Therapeutics 2004; 101: 259–281.

    Article  CAS  Google Scholar 

  40. Varecka L, Wu CH, Rotter A, Frostholm A . GABAA/benzodiazepine receptor alpha 6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice. J Comp Neurol 1997; 339: 341–352.

    Article  Google Scholar 

  41. Neelands TR, Macdonald RL . Incorporation of the pi subunit into functional gamma-aminobutyric Acid(A) receptors. Mol Pharmacol 1999; 56: 598–610.

    Article  CAS  PubMed  Google Scholar 

  42. Hedblom E, Kirkness EF . A novel class of GABAA receptor subunit in tissues of the reproductive system. J Biol Chem 1997; 272: 15346–15350.

    Article  CAS  PubMed  Google Scholar 

  43. Squires RF, Lajtha A, Saederup E, Palkovits M . Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of postmortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses? Neurochem Res 1993; 18: 219–223.

    Article  CAS  PubMed  Google Scholar 

  44. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney Jr WE et al. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 1995; 5: 550–560.

    Article  CAS  PubMed  Google Scholar 

  45. Huntsman MM, Tran BV, Potkin SG, Bunney Jr WE, Jones EG . Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 1998; 95: 15066–15071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC . Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 1999; 93: 441–448.

    Article  CAS  PubMed  Google Scholar 

  47. Lewis DA, Volk DW, Hashimoto T . Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berlin) 2004; 174: 143–150.

    Article  CAS  Google Scholar 

  48. Wassef A, Baker J, Kochan LD . GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 2003; 23: 601–640.

    Article  CAS  PubMed  Google Scholar 

  49. Coyle JT . The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 2004; 68: 1507–1514.

    Article  CAS  PubMed  Google Scholar 

  50. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T . GABAA receptor gamma subunits in the prefrontal cortex of patients with schizophrenia and bipolar disorder. Neuroreport 2004; 15: 1809–1812.

    Article  CAS  PubMed  Google Scholar 

  52. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  53. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  PubMed  Google Scholar 

  54. Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J et al. Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry 2004; 9: 208–213.

    Article  CAS  PubMed  Google Scholar 

  55. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 2003; 8: 706–709.

    Article  CAS  PubMed  Google Scholar 

  56. Tang JX, Chen WY, He G, Zhou J, Gu NF, Feng GY et al. Polymorphisms within 5' end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 2004; 9: 11–12.

    Article  CAS  PubMed  Google Scholar 

  57. Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM et al. Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 2004; 9: 698–704.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao X, Shi Y, Tang J, Tang R, Yu L, Gu N et al. A case control and family based association study of the neuregulin1 gene and schizophrenia. J Med Genet 2004; 41: 31–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366–374.

    Article  CAS  PubMed  Google Scholar 

  60. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  PubMed  Google Scholar 

  62. van den Oord EJ, Sullivan PF, Jiang Y, Walsh D, O'Neill FA, Kendler KS et al. Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry 2003; 8: 499–510.

    Article  CAS  PubMed  Google Scholar 

  63. Van Den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 2003; 73: 1438–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang JX, Zhou J, Fan JB, Li XW, Shi YY, Gu NF et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003; 8: 1008.

    Article  CAS  Google Scholar 

  65. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M et al. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004; 61: 336–344.

    Article  CAS  PubMed  Google Scholar 

  66. Okada M, Corfas G . Neuregulin1 downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus 2004; 14: 337–344.

    Article  CAS  PubMed  Google Scholar 

  67. Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ . Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 2001; 276: 24232–24241.

    Article  CAS  PubMed  Google Scholar 

  68. Peters MF, O'Brien KF, Sadoulet-Puccio HM, Kunkel LM, Adams ME, Froehner SC . Beta-dystrobrevin, a new member of the dystrophin family. Identification, cloning, and protein associations. J Biol Chem 1997; 272: 31561–31569.

    Article  CAS  PubMed  Google Scholar 

  69. Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM . Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 1999; 11: 4457–4462.

    Article  CAS  PubMed  Google Scholar 

  70. Lo WS, Lau CF, Xuan Z, Chan CF, Feng GY, He L et al. Association of SNPs and haplotypes in GABAA receptor beta2 gene with schizophrenia. Mol Psychiatry 2004; 9: 603–608.

    Article  CAS  PubMed  Google Scholar 

  71. Nurnberger Jr JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 1994; 51: 849–859; discussion 863–864.

    Article  PubMed  Google Scholar 

  72. McGuffin P, Farmer A, Harvey I . A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch Gen Psychiatry 1991; 48: 764–770.

    Article  CAS  PubMed  Google Scholar 

  73. Purcell S, Cherny SS, Sham PC . Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  PubMed  Google Scholar 

  74. Pritchard JK, Rosenberg NA . Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999; 65: 220–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N et al. Assessing the impact of population stratification on genetic association studies. Nat Genet 2004; 36: 388–393.

    Article  CAS  PubMed  Google Scholar 

  76. Sklar P, Schwab SG, Williams NM, Daly M, Schaffner S, Maier W et al. Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. Nat Genet 2001; 28: 126–128.

    Article  CAS  PubMed  Google Scholar 

  77. Spitzer RL, Endicott J, Robins E . Research diagnostic criteria: rationale and reliability. Arch Gen Psychiatry 1978; 35: 773–782.

    Article  CAS  PubMed  Google Scholar 

  78. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry 2002; 7: 579–593.

    Article  CAS  PubMed  Google Scholar 

  79. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  80. Lewontin RC . The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 1964; 49: 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  82. Hedrick PW, Thomson G . Maternal–fetal interactions and the maintenance of HLA polymorphism. Genetics 1988; 119: 205–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  PubMed  Google Scholar 

  84. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rioux JD, Karinen H, Kocher K, McMahon SG, Karkkainen P, Janatuinen E et al. Genomewide search and association studies in a Finnish celiac disease population: Identification of a novel locus and replication of the HLA and CTLA4 loci. Am J Med Genet A 2004; 130: 345–350.

    Article  Google Scholar 

  86. Morris JA, Gardner MJ . Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J (Clin Res Ed) 1988; 296: 1313–1316.

    Article  CAS  Google Scholar 

  87. Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M et al. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 12–25.

    Article  Google Scholar 

  88. Falconer DS, MacKay TFC . Introduction to Quantitative Genetics. Prentice-Hall: Harlow, 1996.

    Google Scholar 

  89. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  90. Reiner A, Yekutieli D, Benjamini Y . Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003; 19: 368–375.

    Article  CAS  PubMed  Google Scholar 

  91. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 2002; 99: 4465–4470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101: 6062–6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. DeRisi JL, Iyer VR, Brown PO . Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278: 680–686.

    Article  CAS  PubMed  Google Scholar 

  94. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9: 3273–3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  97. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  PubMed  Google Scholar 

  98. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley Foundation brain collection and Neuropathology Consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  PubMed  Google Scholar 

  99. Turunen JA, Paunio T, Ekelund J, Suhonen J, Varilo T, Patrtonen T et al. Association of GABRG2 gene variants with susceptibility to schizophrenia. Am J Med Genet 2003; 122B: 18.

    Google Scholar 

  100. Laurie DJ, Wisden W, Seeburg PH . The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 1992; 12: 4151–4172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wisden W, Laurie DJ, Monyer H, Seeburg PH . The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992; 12: 1040–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  103. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P . Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 2002; 22: 2718–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W . Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 2004; 67: 41–52.

    Article  PubMed  Google Scholar 

  105. Perl O, Ilani T, Strous RD, Lapidus R, Fuchs S . The alpha7 nicotinic acetylcholine receptor in schizophrenia: decreased mRNA levels in peripheral blood lymphocytes. FASEB J 2003; 17: 1948–1950.

    Article  CAS  PubMed  Google Scholar 

  106. Tian J, Chau C, Hales TG, Kaufman DL . GABAA receptors mediate inhibition of T cell responses. J Neuroimmunol 1999; 96: 21–28.

    Article  CAS  PubMed  Google Scholar 

  107. Erdo SL, Wolff JR . Gamma-aminobutyric acid outside the mammalian brain. J Neurochem 1990; 54: 363–372.

    Article  CAS  PubMed  Google Scholar 

  108. Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 2004; 44: 251–261.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the families and individuals who participated in this study. We thank Ana Dourado, Jose Valente, Carlos Paz Ferreira, Isabel Coelho, and MJ Soares for patient collection, Sinead O'Leary for analytical assistance, and Eric Lander, Ed Skolnick, Nick Patterson, and Vamsi Mootha for helpful discussions of the manuscript. We acknowledge the Stanley Medical Research Foundation, and Michael Knable, DO, Serge Weis, MD, Fuller Torrey, MD, Maree Webster, PhD, and Robert Yolken, MD for donating postmortem brain tissue. This research was supported by NIMH Grants MH52618 and MH058693 to CNP, and NARSAD Young Investigator awards to TLP and CNP. MJD was a Pfizer Fellow in Computational Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Sklar.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petryshen, T., Middleton, F., Tahl, A. et al. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 10, 1074–1088 (2005). https://doi.org/10.1038/sj.mp.4001739

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001739

Keywords

This article is cited by

Search

Quick links