Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood

Abstract

Brain-derived neurotrophic factor (BDNF) has been reported to be critical for the development of cortical inhibitory neurons. However, the effect of BDNF on the expression of transcripts whose protein products are involved in gamma amino butric acid (GABA) neurotransmission has not been assessed. In this study, gene expression profiling using oligonucleotide microarrays was performed in prefrontal cortical tissue from mice with inducible deletions of BDNF. Both embryonic and adulthood ablation of BDNF gave rise to many shared transcriptome changes. BDNF appeared to be required to maintain gene expression in the SST-NPY-TAC1 subclass of GABA neurons, although the absence of BDNF did not alter their general phenotype as inhibitory neurons. Furthermore, we observed expression alterations in genes encoding early-immediate genes (ARC, EGR1, EGR2, FOS, DUSP1, DUSP6) and critical cellular signaling systems (CDKN1c, CCND2, CAMK1g, RGS4). These BDNF-dependent gene expression changes may illuminate the biological basis for transcriptome changes observed in certain human brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Angelucci F, Brene S, Mathe AA . BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 2005; 10: 345–352.

    Article  CAS  PubMed  Google Scholar 

  2. Mody I . The GAD-given right of dentate gyrus granule cells to become GABAergic. Epilepsy Curr 2002; 2: 143–145.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marty S, Berninger B, Carroll P, Thoenen H . GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 1996; 16: 565–570.

    Article  CAS  PubMed  Google Scholar 

  4. de Lima AD, Opitz T, Voigt T . Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity. Eur J Neurosci 2004; 19: 2931–2943.

    Article  PubMed  Google Scholar 

  5. Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 2004; 24: 9598–9611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 1999; 98: 739–755.

    Article  CAS  PubMed  Google Scholar 

  7. Bramham CR, Messaoudi E . BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76: 99–125.

    Article  CAS  PubMed  Google Scholar 

  8. Baldelli P, Novara M, Carabelli V, Hernandez-Guijo JM, Carbone E . BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling. Eur J Neurosci 2002; 16: 2297–2310.

    Article  CAS  PubMed  Google Scholar 

  9. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C . Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5: 793–807.

    Article  CAS  PubMed  Google Scholar 

  10. McBain CJ, Fisahn A . Interneurons unbound. Nat Rev Neurosci 2001; 2: 11–23.

    Article  CAS  PubMed  Google Scholar 

  11. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004; 101: 10827–10832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN et al. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 2005; 25: 372–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niblock MM, Brunso-Bechtold JK, Riddle DR . Laminar variation in neuronal viability and trophic dependence in neocortical slices. J Neurosci Res 2001; 65: 455–462.

    Article  CAS  PubMed  Google Scholar 

  14. Itami C, Mizuno K, Kohno T, Nakamura S . Brain-derived neurotrophic factor requirement for activity-dependent maturation of glutamatergic synapse in developing mouse somatosensory cortex. Brain Res 2000; 857: 141–150.

    Article  CAS  PubMed  Google Scholar 

  15. Lotto RB, Asavaritikrai P, Vali L, Price DJ . Target-derived neurotrophic factors regulate the death of developing forebrain neurons after a change in their trophic requirements. J Neurosci 2001; 21: 3904–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Kelz MB, Zeng G, Sakai N, Steffen C, Shockett PE et al. Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol 1998; 54: 495–503.

    Article  CAS  PubMed  Google Scholar 

  17. Radomska HS, Gonzalez DA, Okuno Y, Iwasaki H, Nagy A, Akashi K et al. Transgenic targeting with regulatory elements of the human CD34 gene. Blood 2002; 100: 4410–4419.

    Article  CAS  PubMed  Google Scholar 

  18. Perl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA . Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA 2002; 99: 10482–10487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 2001; 15: 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  20. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  21. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mirnics K, Pevsner J . Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 2004; 7: 434–439.

    Article  CAS  PubMed  Google Scholar 

  23. Unger T, Korade Z, Lazarov O, Terrano D, Sisodia SS, Mirnics K . True and false discovery in DNA microarray experiments: transcriptome changes in the hippocampus of Presenilin-1 mutant mice. Methods 2005; 37: 261–273.

    Article  CAS  PubMed  Google Scholar 

  24. Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M et al. Presenilin-1-dependent transcriptome changes. J Neurosci 2005; 25: 1571–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lazarov O, Robinson J, Tang I, Korade Mirnics Z, Hairston V, Lee M-Y et al. Environmental enrichment reduces A-beta levels and amyloid deposition in transgenic mice. Cell 2005; 120: 701–713.

    Article  CAS  PubMed  Google Scholar 

  26. Lepre J, Rice JJ, Tu Y, Stolovitzky G . Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data. Bioinformatics 2004; 20: 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  27. Mimmack ML, Brooking J, Bahn S . Quantitative polymerase chain reaction: validation of microarray results from postmortem brain studies. Biol Psychiatry 2004; 55: 337–345.

    Article  CAS  PubMed  Google Scholar 

  28. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  29. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P . Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.

    Article  CAS  PubMed  Google Scholar 

  30. Hendry SH, Jones EG, Emson PC . Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 1984; 4: 2497–2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan-Palay V . Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J Comp Neurol 1987; 260: 201–223.

    Article  CAS  PubMed  Google Scholar 

  32. Eriksdotter-Nilsson M, Meister B, Hokfelt T, Elde R, Fahrenkrug J, Frey P et al. Glutamic acid decarboxylase- and peptide-immunoreactive neurons in cortex cerebri following development in isolation: evidence of homotypic and disturbed patterns in intraocular grafts. Synapse 1987; 1: 539–551.

    Article  CAS  PubMed  Google Scholar 

  33. Gascon E, Vutskits L, Zhang H, Barral-Moran MJ, Kiss PJ, Mas C et al. Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur J Neurosci 2005; 21: 69–80.

    Article  CAS  PubMed  Google Scholar 

  34. Marty S, Berzaghi Mda P, Berninger B . Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci 1997; 20: 198–202.

    Article  CAS  PubMed  Google Scholar 

  35. Marty S . Differences in the regulation of neuropeptide Y, somatostatin and parvalbumin levels in hippocampal interneurons by neuronal activity and BDNF. Prog Brain Res 2000; 128: 193–202.

    Article  CAS  PubMed  Google Scholar 

  36. Morris BJ . Neuronal localisation of neuropeptide Y gene expression in rat brain. J Comp Neurol 1989; 290: 358–368.

    Article  CAS  PubMed  Google Scholar 

  37. McDonald AJ . Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala. Brain Res 1989; 500: 37–45.

    Article  CAS  PubMed  Google Scholar 

  38. Papadopoulos GC, Parnavelas JG, Cavanagh ME . Extensive co-existence of neuropeptides in the rat visual cortex. Brain Res 1987; 420: 95–99.

    Article  CAS  PubMed  Google Scholar 

  39. Chronwall BM, Chase TN, O'Donohue TL . Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci Lett 1984; 52: 213–217.

    Article  CAS  PubMed  Google Scholar 

  40. Cotman CW, Engesser-Cesar C . Exercise enhances and protects brain function. Exerc Sport Sci Rev 2002; 30: 75–79.

    Article  PubMed  Google Scholar 

  41. Tong L, Shen H, Perreau VM, Balazs R, Cotman CW . Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 2001; 8: 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  42. Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P et al. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res Brain Res Rev 1999; 29: 137–168.

    Article  CAS  PubMed  Google Scholar 

  43. Mattson MP, Scheff SW . Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma 1994; 11: 3–33.

    Article  CAS  PubMed  Google Scholar 

  44. Nakazawa T, Tamai M, Mori N . Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci 2002; 43: 3319–3326.

    PubMed  Google Scholar 

  45. Yamada K, Mizuno M, Nabeshima T . Role for brain-derived neurotrophic factor in learning and memory. Life Sci 2002; 70: 735–744.

    Article  CAS  PubMed  Google Scholar 

  46. Shieh PB, Ghosh A . Molecular mechanisms underlying activity-dependent regulation of BDNF expression. J Neurobiol 1999; 41: 127–134.

    Article  CAS  PubMed  Google Scholar 

  47. Black IB . Trophic regulation of synaptic plasticity. J Neurobiol 1999; 41: 108–118.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M . c-fos regulates neuronal excitability and survival. Nat Genet 2002; 30: 416–420.

    Article  CAS  PubMed  Google Scholar 

  49. Ryser S, Massiha A, Piuz I, Schlegel W . Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter. Biochem J 2004; 378: 473–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murphy LO, MacKeigan JP, Blenis J . A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 2004; 24: 144–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnea A, Roberts J, Croll SD . Continuous exposure to brain-derived neurotrophic factor is required for persistent activation of TrkB receptor, the ERK signaling pathway, and the induction of neuropeptide Y production in cortical cultures. Brain Res 2004; 1020: 106–117.

    Article  CAS  PubMed  Google Scholar 

  52. Rakhit S, Clark CJ, O'Shaughnessy C T, Morris BJ . NMDA and BDNF induce distinct profiles of Extracellular regulated kinase (ERK), Mitogen and stress activated kinase (MSK) and Ribosomal S6 kinase (RSK) phosphorylation in cortical neurones. Mol Pharmacol 2004; 67: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  53. Spalding KL, Rush RA, Harvey AR . Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. J Neurobiol 2004; 60: 319–327.

    Article  CAS  PubMed  Google Scholar 

  54. Wetmore C, Olson L, Bean AJ . Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors. J Neurosci 1994; 14: 1688–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bryja V, Pachernik J, Faldikova L, Krejci P, Pogue R, Nevriva I et al. The role of p27(Kip1) in maintaining the levels of D-type cyclins in vivo. Biochim Biophys Acta 2004; 1691: 105–116.

    Article  CAS  PubMed  Google Scholar 

  56. Morris TA, DeLorenzo RJ, Tombes RM . CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp Cell Res 1998; 240: 218–227.

    Article  CAS  PubMed  Google Scholar 

  57. Ross ME, Risken M . MN20, a D2 cyclin found in brain, is implicated in neural differentiation. J Neurosci 1994; 14: 6384–6391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tamaru T, Okada M, Nakagawa H . Differential expression of D type cyclins during neuronal maturation. Neurosci Lett 1994; 168: 229–232.

    Article  CAS  PubMed  Google Scholar 

  59. Kabos P, Kabosova A, Neuman T . Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. J Biol Chem 2002; 277: 8763–8766.

    Article  CAS  PubMed  Google Scholar 

  60. Xie F, Raetzman LT, Siegel RE . Neuregulin induces GABAA receptor beta2 subunit expression in cultured rat cerebellar granule neurons by activating multiple signaling pathways. J Neurochem 2004; 90: 1521–1529.

    Article  CAS  PubMed  Google Scholar 

  61. Klugmann M, Wymond Symes C, Leichtlein CB, Klaussner BK, Dunning J, Fong D et al. AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol Cell Neurosci 2005; 28: 347–360.

    Article  CAS  PubMed  Google Scholar 

  62. Feldker DE, Datson NA, Veenema AH, Proutski V, Lathouwers D, De Kloet ER et al. GeneChip analysis of hippocampal gene expression profiles of short- and long-attack-latency mice: technical and biological implications. J Neurosci Res 2003; 74: 701–716.

    Article  CAS  PubMed  Google Scholar 

  63. D'Adamo P, Wolfer DP, Kopp C, Tobler I, Toniolo D, Lipp HP . Mice deficient for the synaptic vesicle protein Rab3a show impaired spatial reversal learning and increased explorative activity but none of the behavioral changes shown by mice deficient for the Rab3a regulator Gdi1. Eur J Neurosci 2004; 19: 1895–1905.

    Article  PubMed  Google Scholar 

  64. Gonchar Y, Burkhalter A . Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 1997; 7: 347–358.

    Article  CAS  PubMed  Google Scholar 

  65. Kawaguchi Y, Kondo S . Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 2002; 31: 277–287.

    Article  PubMed  Google Scholar 

  66. Demeulemeester H, Vandesande F, Orban GA, Brandon C, Vanderhaeghen JJ . Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 1988; 8: 988–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alho H, Ferrarese C, Vicini S, Vaccarino F . Subsets of GABAergic neurons in dissociated cell cultures of neonatal rat cerebral cortex show co-localization with specific modulator peptides. Brain Res 1988; 467: 193–204.

    Article  CAS  PubMed  Google Scholar 

  68. Kubota Y, Kawaguchi Y . Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons. Brain Res 1997; 752: 175–183.

    Article  CAS  PubMed  Google Scholar 

  69. Nawa H, Bessho Y, Carnahan J, Nakanishi S, Mizuno K . Regulation of neuropeptide expression in cultured cerebral cortical neurons by brain-derived neurotrophic factor. J Neurochem 1993; 60: 772–775.

    Article  CAS  PubMed  Google Scholar 

  70. Mizuno K, Carnahan J, Nawa H . Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 1994; 165: 243–256.

    Article  CAS  PubMed  Google Scholar 

  71. Reibel S, Vivien-Roels B, Le BT, Larmet Y, Carnahan J, Marescaux C et al. Overexpression of neuropeptide Y induced by brain-derived neurotrophic factor in the rat hippocampus is long lasting. Eur J Neurosci 2000; 12: 595–605.

    Article  CAS  PubMed  Google Scholar 

  72. Egan MF, Weinberger DR, Lu B . Schizophrenia, III: brain-derived neurotropic factor and genetic risk. Am J Psychiatry 2003; 160: 1242.

    Article  PubMed  Google Scholar 

  73. Szekeres G, Juhasz A, Rimanoczy A, Keri S, Janka Z . The C270T polymorphism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr Res 2003; 65: 15–18.

    Article  PubMed  Google Scholar 

  74. Krebs MO, Guillin O, Bourdell MC, Schwartz JC, Olie JP, Poirier MF et al. Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 2000; 5: 558–562.

    Article  CAS  PubMed  Google Scholar 

  75. de Krom M, Bakker SC, Hendriks J, van Elburg A, Hoogendoorn M, Verduijn W et al. Polymorphisms in the brain-derived neurotrophic factor gene are not associated with either anorexia nervosa or schizophrenia in Dutch patients. Psychiatr Genet 2005; 15: 81.

    Article  PubMed  Google Scholar 

  76. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimaki T, Leinonen E . Lack of association between two polymorphisms of brain-derived neurotrophic factor and response to typical neuroleptics. J Neural Transm 2005; 112: 885–890.

    Article  CAS  PubMed  Google Scholar 

  77. Galderisi S, Maj M, Kirkpatrick B, Piccardi P, Mucci A, Invernizzi G et al. COMT Val(158)Met and BDNF C(270)T polymorphisms in schizophrenia: a case-control study. Schizophr Res 2005; 73: 27–30.

    Article  PubMed  Google Scholar 

  78. Neves-Pereira M, Cheung JK, Pasdar A, Zhang F, Breen G, Yates P et al. BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol Psychiatry 2005; 10: 208–212.

    Article  CAS  PubMed  Google Scholar 

  79. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000; 5: 293–300.

    Article  CAS  PubMed  Google Scholar 

  80. Iritani S, Niizato K, Nawa H, Ikeda K, Emson PC . Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 801–807.

    Article  CAS  PubMed  Google Scholar 

  81. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE . Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  PubMed  Google Scholar 

  82. Weickert CS, Ligons DL, Romanczyk T, Ungaro G, Hyde TM, Herman MM et al. Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2005; 10: 637–650.

    Article  CAS  PubMed  Google Scholar 

  83. Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res 2002; 110: 249–257.

    Article  CAS  PubMed  Google Scholar 

  84. Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR . BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 2001; 14: 135–144.

    Article  CAS  PubMed  Google Scholar 

  85. Ashe PC, Chlan-Fourney J, Juorio AV, Li XM . Brain-derived neurotrophic factor (BDNF) mRNA in rats with neonatal ibotenic acid lesions of the ventral hippocampus. Brain Res 2002; 956: 126–135.

    Article  CAS  PubMed  Google Scholar 

  86. Fiore M, Korf J, Antonelli A, Talamini L, Aloe L . Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol Teratol 2002; 24: 179–191.

    Article  CAS  PubMed  Google Scholar 

  87. Fumagalli F, Molteni R, Roceri M, Bedogni F, Santero R, Fossati C et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 2003; 72: 622–628.

    Article  CAS  PubMed  Google Scholar 

  88. Fumagalli F, Bedogni F, Perez J, Racagni G, Riva MA . Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 2004; 20: 1348–1354.

    Article  PubMed  Google Scholar 

  89. Erdely HA, Tamminga CA, Roberts RC, Vogel MW . Regional alterations in RGS4 protein in schizophrenia. Synapse 2006; 59: 472–479.

    Article  CAS  PubMed  Google Scholar 

  90. Hashimoto T, Arion D, Unger T, Mirnics K, Lewis DA . Analysis of the GABA-related transcriptome in the prefrontal cortex of subjects with schizophrenia. Soc Neurosci Abstracts 2005; 35: 675.4.

    Google Scholar 

  91. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  92. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    CAS  PubMed  Google Scholar 

  93. Bennett GW, Ballard TM, Watson CD, Fone KC . Effect of neuropeptides on cognitive function. Exp Gerontol 1997; 32: 451–469.

    Article  CAS  PubMed  Google Scholar 

  94. Matsuoka N, Maeda N, Yamaguchi I, Satoh M . Possible involvement of brain somatostatin in the memory formation of rats and the cognitive enhancing action of FR121196 in passive avoidance task. Brain Res 1994; 642: 11–19.

    Article  CAS  PubMed  Google Scholar 

  95. Schettini G . Brain somatostatin: receptor-coupled transducing mechanisms and role in cognitive functions. Pharmacol Res 1991; 23: 203–215.

    Article  CAS  PubMed  Google Scholar 

  96. Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 1999; 56: 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  97. Morrison JH, Rogers J, Scherr S, Benoit R, Bloom FE . Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients. Nature 1985; 314: 90–92.

    Article  CAS  PubMed  Google Scholar 

  98. Davies P, Katzman R, Terry RD . Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 1980; 288: 279–280.

    Article  CAS  PubMed  Google Scholar 

  99. Arai H, Moroji T, Kosaka K . Somatostatin and vasoactive intestinal polypeptide in postmortem brains from patients with Alzheimer-type dementia. Neurosci Lett 1984; 52: 73–78.

    Article  CAS  PubMed  Google Scholar 

  100. Davies P, Terry RD . Cortical somatostatin-like immunoreactivity in cases of Alzheimer's disease and senile dementia of the Alzheimer type. Neurobiol Aging 1981; 2: 9–14.

    Article  CAS  PubMed  Google Scholar 

  101. Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MP et al. Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer's disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 2005; 18: 602–617.

    Article  CAS  PubMed  Google Scholar 

  102. Tong L, Balazs R, Thornton PL, Cotman CW . Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 2004; 24: 6799–6809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. ADEAR. FK962 – Evaluation in Mild to Moderate AD. http://www.alzheimers.org/clintrials/fullrec.asp?PrimaryKey=197, 2005.

Download references

Acknowledgements

We are thankful to Drs Pat R Levitt and Etienne Sibille for valuable comments on the manuscript. We also thank for Dr Dominique Arion, Katherine C Douglass, Annie Bedison and Melissa Macioce for superb technical assistance with the experiments. This work was supported by R01 MH067234 (KM), 2 P50 MH45156-14 CCNMD Project 2 (KM) and K02 MH070786 (KM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Mirnics.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glorioso, C., Sabatini, M., Unger, T. et al. Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Mol Psychiatry 11, 633–648 (2006). https://doi.org/10.1038/sj.mp.4001835

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001835

Keywords

This article is cited by

Search

Quick links