Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes

Abstract

Valproate (VPA), one of the mood stabilizers and antiepileptic drugs, was recently found to inhibit histone deacetylases (HDAC). Increasing reports demonstrate that VPA has neurotrophic effects in diverse cell types including midbrain dopaminergic (DA) neurons. However, the origin and nature of the mediator of the neurotrophic effects are unclear. We have previously demonstrated that VPA prolongs the survival of midbrain DA neurons in lipopolysaccharide (LPS)-treated neuron-glia cultures through the inhibition of the release of pro-inflammatory factors from microglia. In this study, we report that VPA upregulates the expression of neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) from astrocytes and these effects may play a major role in mediating VPA-induced neurotrophic effects on DA neurons. Moreover, VPA pretreatment protects midbrain DA neurons from LPS or 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Our study identifies astrocyte as a novel target for VPA to induce neurotrophic and neuroprotective actions in rat midbrain and shows a potential new role of cellular interactions between DA neurons and astrocytes. The neurotrophic and neuroprotective effects of VPA also suggest a utility of this drug for treating neurodegenerative disorders including Parkinson's disease. Moreover, the neurotrophic effects of VPA may contribute to the therapeutic action of this drug in treating bipolar mood disorder that involves a loss of neurons and glia in discrete brain areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ACM:

astrocyte-conditioned medium

BDNF:

brain-derived neurotrophic factor

DA:

dopaminerigc

FBS:

fetal bovine serum

GDNF:

glial cell line-derived neurotrophic factor

HDAC:

histone deacetylase

LPS:

lipopolysaccharide

MPP+:

1-methyl-4-phenylpyridinium

PD:

Parkinson's disease

TH-IR:

tyrosine hydroxylase-immunoreactive

VPA:

valproate

References

  1. Drevets WC . Neuroimaging studies of mood disorders. Biological Psychiatry 2000; 48: 813–829.

    Article  CAS  PubMed  Google Scholar 

  2. Rajkowska G . Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000; 48: 766–777.

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang DM . Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 2002; 80: 589–597.

    Article  CAS  PubMed  Google Scholar 

  4. Kanai H, Sawa A, Chen RW, Leeds P, Chuang DM . Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenom J 2004; 4: 336–344.

    Article  CAS  Google Scholar 

  5. Bown CD, Wang JF, Chen B, Young LT . Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord 2002; 4: 145–151.

    Article  CAS  PubMed  Google Scholar 

  6. Hiroi T, Wei H, Hough C, Leeds P, Chuang D-M . Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenom J 2005; 5: 102–111.

    Article  CAS  Google Scholar 

  7. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM . Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004; 89: 1358–1367.

    Article  CAS  PubMed  Google Scholar 

  8. De Sarno P, Li X, Jope RS . Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43: 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G . The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001; 276: 31674–31683.

    Article  CAS  PubMed  Google Scholar 

  10. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003; 23: 7311–7316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72: 879–882.

    Article  CAS  PubMed  Google Scholar 

  12. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S . Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology 2001; 158: 100–106.

    Article  CAS  PubMed  Google Scholar 

  13. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–36741.

    Article  CAS  PubMed  Google Scholar 

  14. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horner PJ, Palmer TD . New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci 2003; 26: 597–603.

    Article  CAS  PubMed  Google Scholar 

  16. Ransom B, Behar T, Nedergaard M . New roles for astrocytes (stars at last). Trends Neurosci 2003; 26: 520–522.

    Article  CAS  PubMed  Google Scholar 

  17. Nedergaard M, Ransom B, Goldman SA . New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003; 26: 523–530.

    Article  CAS  PubMed  Google Scholar 

  18. Coyle JT, Schwarcz R . Mind glue: implications of glial cell biology for psychiatry. Arch Gen Psychiatry 2000; 57: 90–93.

    Article  CAS  PubMed  Google Scholar 

  19. Harrison PJ . The neuropathology of primary mood disorder. Brain 2004; 125 (Part 7): 1428–1449.

    Google Scholar 

  20. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA . Control of synapse number by glia. Science 2001; 291: 657–661.

    Article  CAS  PubMed  Google Scholar 

  21. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004; 24: 207–216.

    Article  CAS  PubMed  Google Scholar 

  22. Trendelenburg G, Dirnagl U . Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005; 50: 307–320.

    Article  PubMed  Google Scholar 

  23. Sofroniew MV . Reactive astrocytes in neural repair and protection. Neuroscientist 2005; 11: 400–407.

    Article  CAS  PubMed  Google Scholar 

  24. Darlington C . Astrocytes as targets for neuroprotective drugs. Curr Opin Invest Drugs 2005; 6: 700–703.

    CAS  Google Scholar 

  25. Ranaivo H, Craft J, Hu W, Guo L, Wing L, Van EL et al. Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 2006; 26: 662–670.

    Article  CAS  PubMed Central  Google Scholar 

  26. Kahn MA, Ellison JA, Speight GJ, de Vellis J . CNTF regulation of astrogliosis and the activation of microglia in the developing rat central nervous system. Brain Research 1995; 685: 55–67.

    Article  CAS  PubMed  Google Scholar 

  27. Tzeng SF, Kahn M, Liva S, De Vellis J . Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury. Glia 1999; 26: 139–152.

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Hong JS . Primary rat mesencephalic neuron-glia, neuron-enriched, microglia-enriched, and astroglia-enriched cultures. Methods Mol Med 2003; 79: 387–395.

    PubMed  Google Scholar 

  29. Wu XF, Block ML, Zhang W, Qin L, Wilson B, Zhang WQ et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid Redox Signal 2005; 7: 654–661.

    Article  CAS  PubMed  Google Scholar 

  30. Gao HM, Liu B, Hong JS . Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. Journal of Neuroscience 2003; 23: 6181–6187.

    Article  CAS  PubMed  Google Scholar 

  31. Oo TF, Kholodilov N, Burke RE . Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 2003; 23: 5141–5148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burke RE, Antonelli M, Sulzer D . Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 1998; 71: 517–525.

    Article  CAS  PubMed  Google Scholar 

  33. Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E . Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem 1999; 73: 70–78.

    Article  CAS  PubMed  Google Scholar 

  34. Bourque MJ, Trudeau LE . GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 2000; 12: 3172–3180.

    Article  CAS  PubMed  Google Scholar 

  35. Lin LF, Zhang TJ, Collins F, Armes LG . Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J Neurochem 1994; 63: 758–768.

    Article  CAS  PubMed  Google Scholar 

  36. Schaar DG, Sieber BA, Sherwood AC, Dean D, Mendoza G, Ramakrishnan L et al. Multiple astrocyte transcripts encode nigral trophic factors in rat and human. Exp Neurol 1994; 130: 387–393.

    Article  CAS  PubMed  Google Scholar 

  37. Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373: 339–341.

    Article  CAS  PubMed  Google Scholar 

  38. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373: 335–339.

    Article  CAS  PubMed  Google Scholar 

  39. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380: 252–255.

    Article  CAS  PubMed  Google Scholar 

  40. Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 1998; 18: 9822–9834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Erickson JT, Brosenitsch TA, Katz DM . Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 2001; 21: 581–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004; 27: 1415–1421.

    Article  CAS  Google Scholar 

  43. Gao HM, Liu B, Zhang W, Hong JS . Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. FASEB J 2003; 17: 1957–1959.

    Article  CAS  PubMed  Google Scholar 

  44. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 2003; 23: 9418–9427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003; 100: 2041–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H . Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 2001; 98: 9808–9813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Minamiyama M, Katsuno M, Adachi H, Waza M, Sang C, Kobayashi Y et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2004; 13: 1183–1192.

    Article  CAS  PubMed  Google Scholar 

  48. Backonja MM . Use of anticonvulsants for treatment of neuropathic pain. Neurology 2002; 59: S14–S17.

    Article  PubMed  Google Scholar 

  49. Airaksinen MS, Saarma M . The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3: 383–394.

    Article  CAS  PubMed  Google Scholar 

  50. Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann Neurol 1999; 46: 419–424.

    Article  CAS  PubMed  Google Scholar 

  51. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws Jr ER et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003; 60: 69–73.

    Article  CAS  PubMed  Google Scholar 

  52. Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS . Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 2001; 77: 182–189.

    Article  CAS  PubMed  Google Scholar 

  53. Peng GS, Li G, Tzengc NS, Chen PS, Chuange DM, Hsua YD et al. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 2005; 24: 162–169.

    Article  CAS  Google Scholar 

  54. Rajkowska G . Post. Biol Psychiatry 2000; 48: 766–777.

    Article  CAS  PubMed  Google Scholar 

  55. Rajkowska G, Halaris A, Selemon LD . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder (see comment). Biol Psychiatry 2001; 49: 741–752.

    Article  CAS  PubMed  Google Scholar 

  56. Gray NA, Zhou R, Du J, Moore GJ, Manji HK . The use of mood stabilizers as plasticity enhancers in the treatment of neuropsychiatric disorders. J Clin Psychiatry 2003; 64: 3–17.

    PubMed  CAS  Google Scholar 

  57. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, A Gray N et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  PubMed  Google Scholar 

  58. Manji HK, Moore GJ, Chen G . Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry 2000; 48: 740–754.

    Article  CAS  PubMed  Google Scholar 

  59. Eyal S, Yagen B, Sobol E, Altschuler Y, Shmuel M, Bialer M . The activity of antiepileptic drugs as histone deacetylase inhibitors. Epilepsia 2004; 45: 737–744.

    Article  CAS  PubMed  Google Scholar 

  60. Mena MA, de Bernardo S, Casarejos MJ, Canals S, Rodriguez-Martin E . The role of astroglia on the survival of dopamine neurons. Mol Neurobiol 2002; 25: 245–263.

    Article  CAS  PubMed  Google Scholar 

  61. Nilsson M, Ronnback L, Hansson E . Receptor-coupled uptake of valproate in rat astroglial primary cultures. Neurosci Lett 1992; 136: 83–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Sung-Jen Wei for technical assistance; Dr Carl D Bortner and Dr Wei Zhang for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-S Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PS., Peng, GS., Li, G. et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11, 1116–1125 (2006). https://doi.org/10.1038/sj.mp.4001893

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001893

Keywords

This article is cited by

Search

Quick links