Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional control of granulocyte and monocyte development

Abstract

PU.1 directs the hematopoietic stem cell to the lymphoid-myeloid progenitor (LMP) and interacts with GATA-binding protein 1 to inhibit commitment to the megakaryocyte-erythroid progenitor. The CCAAT/enhancer-binding protein (C/EBP)α then directs the LMP to the granulocyte-monocyte progenitor (GMP) stage, while inhibiting lymphoid development via cross-inhibition of Pax5 and potentially other regulators. Increased PU.1 activity favors monocytic commitment of the GMP. Induction of PU.1 by C/EBPα and interaction of PU.1 with c-Jun elevates PU.1 activity. Zippering of C/EBPα with c-Jun or c-Fos also contributes to monocyte lineage specification. An additional factor, potentially an Id1-regulated basic helix–loop–helix protein, may be required for the GMP to commit to the granulocyte lineage. Egr-1, Egr-2, Vitamin D Receptor, MafB/c: Fos and PU.1:interferon regulatory factor 8 complexes direct further monocytic maturation, while retinoic acid receptor (RAR) and C/EBPɛ direct granulopoiesis. Both C/EBPα and RARs induce C/EBPɛ, and PU.1 is also required, albeit at lower levels, for granulocytic maturation. HoxA10 and CAAT displacement protein act as transcriptional repressors to delay expression of terminal differentiation. Gfi-1 and Egr-1,2/Nab2 complexes repress each other to maintain myeloid lineage fidelity. NF-κB directly binds and cooperates with C/EBPβ to induce the inflammatory response in mature myeloid cells and potentially also cooperates with C/EBPα to regulate early myelopoiesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121: 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Traver D, Miyamoto T, Weissman IL . (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197.

    Article  CAS  PubMed  Google Scholar 

  • Anderson K, Rusterholz C, Mansson R, Jensen CT, Bacos K, Zandi S et al. (2007). Ectopic expression of PAX5 promotes self renewal of bi-phenotypic myeloid progenitors co-expressing myeloid and B-cell lineage associated genes. Blood 109: 3697–3705.

    Article  CAS  PubMed  Google Scholar 

  • Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG . (1996). A novel human CCAAT/enhancer binding protein gene, C/EBPɛ, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T cell receptor α/δ locus. Genomics 35: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Arinobu Y, Mizuno S, Shigematsu H, Ozawa H, Chong Y, Iwasaki H et al. (2006). Delineation of the common developmental pathway for granulocyte/monocyte and lymphoid lineages by using an expression reporter for PU.1. Blood 108: 472a.

    Google Scholar 

  • Aziz A, Vanhille L, Mohideen P, Kelly LM, Otto C, Bakri Y et al. (2006). Development of macrophages with altered actin organization in the absence of MafB. Mol Cell Biol 26: 6808–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakri Y, Sarrazin S, Mayer UP, Tillmanns S, Nerlov C, Boned A et al. (2005). Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 105: 2707–2716.

    Article  CAS  PubMed  Google Scholar 

  • Barberis A, Superti-Furga G, Busslinger M . (1987). Mutually exclusive interaction of the CCAAT-binding factor and a displacement protein with overlapping sequences of a histone gene promoter. Cell 50: 347–359.

    Article  CAS  PubMed  Google Scholar 

  • Bassuk AG, Leiden JM . (1995). A direct physical association between ETS and AP-1 transcription factors in normal human T cells. Immunity 3: 223–237.

    Article  CAS  PubMed  Google Scholar 

  • Bastie JN, Baltrand N, Guidez F, Guillemot I, Larghero J, Cabresse C et al. (2004). 1α,25-dihydroxyvitamin D3 transrepresses retinoic acid transcriptional activity via vitamin D receptor in myeloid cells. Mol Endocrinol 18: 2685–2699.

    Article  CAS  PubMed  Google Scholar 

  • Behre G, Whitmarsh AJ, Coghlan MP, Hoang T, Carpenter CL, Zhang DE et al. (1999). c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem 274: 4939–4946.

    Article  CAS  PubMed  Google Scholar 

  • Bei L, Lu Y, Eklund EA . (2005). HOXA9 activates transcription of the gene encoding gp91Phox during myeloid differentiation. J Biol Chem 280: 12359–12370.

    Article  CAS  PubMed  Google Scholar 

  • Bourette RP, Myles GM, Choi JL, Rohrschneider LR . (1997). Sequential activation of phosphatidylinositol 3-kinase and phospholipase C-γ2 by the M-CSF receptor is necessary for differentiation signaling. EMBO J 16: 5880–5893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush TS, St Coeur M, Resendes KK, Rosmarin GG . (2003). GA-binding protein (GABP) and Sp1 are required, along with retinoid receptors, to mediate retinoic acid responsiveness of CD18 (β2 leukocyte integrin): a novel mechanism of transcriptional regulation in myeloid cells. Blood 101: 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Cadieux C, Fournier S, Peterson AC, Bedard C, Bedell BJ, Nepveu A . (2006). Transgenic mice expressing the p75 CCAAT-displacement protein/cut homeobox isoform develop a myeloproliferative disease-like myeloid leukemia. Cancer Res 66: 9492–9501.

    Article  CAS  PubMed  Google Scholar 

  • Cai DH, Wang D, Keefer JR, Hensley K, Friedman AD . (2006). Heterodimers formed via leucine zipper interaction between C/EBPα and c-Jun or c-Fos induce monocytic lineage commitment. Blood 108: 345a.

    Google Scholar 

  • Calkhoven CF, Muller C, Leutz A . (2000). Translational control of C/EBPα and C/EBPβ isoform expression. Genes Dev 14: 1920–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cammenga J, Mulloy JC, Berguido FJ, MacGrogan D, Viale A, Nimer SD . (2003). Induction of C/EBPα activity alters gene expression and differentiation of human CD34+ cells. Blood 101: 2206–2214.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA et al. (1995b). PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11: 1549–1560.

    CAS  PubMed  Google Scholar 

  • Chen HM, Zhang P, Voso MT, Hohaus S, Gonzalez DA, Glass CK et al. (1995a). Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 85: 2918–2928.

    CAS  PubMed  Google Scholar 

  • Chih DY, Chumakov AM, Park DJ, Silla AG, Koeffler HP . (1997). Modulation of mRNA expression of a novel human myeloid-selective CCAAT/enhancer binding protein gene (C/EBPɛ). Blood 90: 2987–2994.

    CAS  PubMed  Google Scholar 

  • Christy RJ, Kaestner KH, Geiman DE, Lane MD . (1991). CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci USA 88: 2593–2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumakov AM, Grillier I, Chumakova E, Chih D, Slater J, Koeffler HP . (1997). Cloning of the novel human myeloid-cell-specific C/EBPɛ transcription factor. Mol Cell Biol 17: 1375–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumakov AM, Silla A, Williamson EA, Koeffler HP . (2007). Modulation of DNA binding properties of CCAAT/enhancer binding protein ɛ by heterodimer formation and interactions with NF-κB pathway. Blood 109: 4209–4219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleaves R, Wang QF, Friedman AD . (2004). C/EBPαp30, a myeloid leukemia oncoprotein, limits G-CSF receptor expression but not terminal granulopoiesis via site-selective inhibition of C/EBP DNA binding. Oncogene 23: 716–725.

    Article  CAS  PubMed  Google Scholar 

  • Crosby SD, Puetz JJ, Simburger KS, Fahrner TJ, Milbrandt J . (1991). The early response gene NGFI-C encodes a zinc finger transcriptional activator and is a member of the GCGGGGGCG (GSG) element-binding protein family. Mol Cell Biol 11: 3835–3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl R, Iyer SR, Owens KS, Cuylear DD, Simon MC . (2007). The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein–protein interaction. J Biol Chem 282: 6473–6483.

    Article  CAS  PubMed  Google Scholar 

  • Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al. (2003). Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat Immunol 4: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  • Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL . (2005). PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201: 1487–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning JP, Dong F, Smith L, Schelen AM, Barge RM, van der Plas DC et al. (1996). The membrane-distal cytoplasmic region of human granulocyte colony-stimulating factor receptor is required for STAT3 but not STAT1 homodimer formation. Blood 87: 1335–1342.

    CAS  PubMed  Google Scholar 

  • de The H, Marchio A, Tiollais P, Dejean A . (1989). Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EMBO J 8: 429–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeKoter RP, Singh H . (2000). Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288: 1439–1441.

    Article  CAS  PubMed  Google Scholar 

  • DeKoter RP, Walsh JC, Singh H . (1998). PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 17: 4456–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descombes P, Schibler U . (1991). A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67: 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Dionne CJ, Tse KY, Weiss AH, Franco CB, Wiest DL, Anderson MK et al. (2005). Subversion of T lineage commitment by PU.1 in a clonal cell line system. Dev Biol 280: 448–466.

    Article  CAS  PubMed  Google Scholar 

  • Douer D, Koeffler HP . (1982). Retinoic acid enhances growth of human early progenitor cells in vitro. J Clin Invest 69: 1039–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn SM, Coles LS, Lang RK, Gerondakis S, Vadas MA, Shannon MF . (1994). Requirement for nuclear factor NF-κB p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83: 2469–2479.

    CAS  PubMed  Google Scholar 

  • Duan Z, Horwitz M . (2003). Targets of the transcriptional repressor oncoprotein Gfi-1. Proc Natl Acad Sci USA 100: 5932–5937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eferl R, Sibilia M, Hilberg F, Fuchsbichler A, Kufferath I, Guertl B et al. (1999). Functions of c-Jun in liver and heart development. J Cell Biol 145: 1049–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbeis CF, Singh H, Storb U . (1995). Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev 9: 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  • Eklund EA, Jalava A, Kakar R . (2000). Tyrosine phosphorylation of HoxA10 decreases DNA binding and transcriptional repression during interferon γ-induced differentiation of myeloid leukemia cell lines. J Biol Chem 275: 20117–20126.

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Mori M, Akira S, Gotoh T . (2006). C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol 176: 6245–6253.

    Article  CAS  PubMed  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. (2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123: 819–831.

    Article  CAS  PubMed  Google Scholar 

  • Ford AM, Bennett CA, Healy LE, Towatari M, Greaves MF, Enver T . (1996). Regulation of the myeloperoxidase enhancer binding proteins Pu1, C-EBP-α, -β, and -δ during granulocyte-lineage specification. Proc Natl Acad Sci USA 93: 10838–10843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman AD . (1996). GADD153/CHOP, a DNA damage-inducible protein, reduced CCAAT/enhancer binding protein activities and increased apoptosis in 32Dcl3 myeloid cells. Cancer Res 56: 3250–3256.

    CAS  PubMed  Google Scholar 

  • Friedman AD . (2002). Transcriptional regulation of granulocyte and monocyte development. Oncogene 21: 3377–3390.

    Article  CAS  PubMed  Google Scholar 

  • Friedman AD, Landschulz WH, McKnight SL . (1989). CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. Genes Dev 3: 1314–1322.

    Article  CAS  PubMed  Google Scholar 

  • Friedman AD, McKnight SL . (1990). Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene. Genes Dev 4: 1416–1426.

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi Y, Shibata F, Ito M, Goto-Koshino Y, Sotomaru Y, Ito M et al. (2006). Comprehensive analysis of myeloid lineage conversion using mice expressing an inducible form of C/EBPα. EMBO J 25: 3398–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM et al. (2006). Langerhans cells arise from monocytes in vivo. Nat Immunol 7: 265–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gombart AF, Krug U, O'Kelly J, An E, Vegesna V, Koeffler HP . (2005). Aberrant expression of neutrophil and macrophage-related genes in a murine model for human neutrophil-specific granule deficiency. J Leuk Biol 78: 1153–1165.

    Article  CAS  Google Scholar 

  • Gombart AF, Shiohara M, Kwok SH, Agematsu K, Komiyama A, Koeffler HP . (2001). Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein-ɛ. Blood 97: 2561–2567.

    Article  CAS  PubMed  Google Scholar 

  • Grimes HL, Chan TO, Zweidler-McKay PA, Tong B, Tsichlis PN . (1996). The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 16: 6263–6272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K et al. (2007). c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 27: 2919–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  • Heath V, Suh HC, Holman M, Renn K, Gooya JM, Parkin S et al. (2004). C/EBPα deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo. Blood 104: 1639–1647.

    Article  CAS  PubMed  Google Scholar 

  • Heavey B, Charalambous C, Cobaleda C, Busslinger M . (2003). Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPα and GATA factors. EMBO J 22: 3887–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde SP, Zhao J, Ashmun RA, Shapiro LH . (1999). c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 94: 1578–1589.

    CAS  PubMed  Google Scholar 

  • Henkel GW, McKercher SR, Leenen PJ, Maki RA . (1999). Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1. Blood 93: 2849–2858.

    CAS  PubMed  Google Scholar 

  • Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA . (2006). The JNK are important for development and survival of macrophages. J Immunol 176: 2219–2228.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Zhang P, Dayaram T, Hetherington CJ, Mizuno S, Imanishi J et al. (2006). C/EBPβ is required for ‘emergency’ granulopoiesis. Nat Immunol 7: 732–739.

    Article  CAS  PubMed  Google Scholar 

  • Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S et al. (2003). Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18: 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Leung TH, Baltimore D . (2003). Genetic analysis of NF-κB/Rel transcription factors defines functional specificities. EMBO J 22: 5530–5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. (1996). Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87: 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, King-Fleischman AG, Lai AY, Matsumoto Y, Weissman IL, Kondo M . (2006). Antagonistic effect of CCAAT enhancer-binding protein-α and Pax5 in myeloid and lymphoid lineage choice in common lymphoid progenitors. Proc Natl Acad Sci USA 103: 672–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu W, Kerppola TK, Chen PL, Curran T, Chen-Kiang S . (1994). Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. Mol Cell Biol 14: 268–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Zhang P, Hirai H, Elf S, Yan X, Chen ZK et al. (2007a). PU.1 is a major downstream target of AML1/RUNX1 in adult hematopoiesis. Nature Genetics (in press).

  • Huang W, Horvath E, Eklund EA . (2007b). PU.1, interferon regulatory factor 2 (IRF2) and the interferon consensus sequence binding protein (ICSBP/IRF8) cooperate to activate NF1-transcription in differentiating myeloid cells. J Biol Chem 282: 6629–6643.

    Article  CAS  PubMed  Google Scholar 

  • Iwama A, Osawa M, Hirasawa R, Uchiyama N, Kaneko S, Onodera M et al. (2002). Reciprocal roles for CCAAT/enhancer binding protein (C/EBP) and PU.1 transcription factors in Langerhans cell differentiation. J Exp Med 195: 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S et al. (2005). Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106: 1590–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankovic V, Ciarrocchi A, Boccuni P, Deblasio T, Benezra R, Nimer SD et al. (2007). Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci USA 104: 1260–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR et al. (2001). c-Myc is a critical target for C/EBPα in granulopoiesis. Mol Cell Biol 21: 3789–3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson PF . (2005). Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 118: 2545–2555.

    Article  CAS  PubMed  Google Scholar 

  • Jones LC, Lin ML, Chen SS, Krug U, Hofmann WK, Lee S et al. (2002). Expression of C/EBPβ from the C/EBPα gene locus is sufficient for normal hematopoiesis in vivo. Blood 99: 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  • Kakar R, Kautz B, Eklund EA . (2005). JAK2 is necessary and sufficient for interferon-γ-induced transcription of the gene encoding gp91PHOX. J Leukoc Biol 77: 120–127.

    Article  CAS  PubMed  Google Scholar 

  • Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW et al. (2002). Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi-1. Nat Genet 30: 295–300.

    Article  PubMed  Google Scholar 

  • Kataoka K, Noda M, Nishizawa M . (1994). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol 14: 700–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kautz B, Kakar R, David E, Eklund EA . (2001). SHP1 protein-tyrosine phosphatase inhibits gp91PHOX and p67PHOX expression by inhibiting interaction of PU.1, IRF1, interferon consensus sequence-binding protein, and CREB-binding protein with homologous cis elements in the CYBB and NCF2 genes. J Biol Chem 276: 37868–37878.

    CAS  PubMed  Google Scholar 

  • Keeshan K, He Y, Wouters BJ, Shestova O, Xu L, Sai H et al. (2006). Tribbles homolog 2 inactivates C/EBPα and causes acute myelogenous leukemia. Cancer Cell 10: 401–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly LM, Englmeier U, Lafon I, Sieweke MH, Graf T . (2000). MafB is an inducer of monocytic differentiation. EMBO J 19: 1987–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna-Gupta A, Zibello T, Sun H, Lekstrom-Himes J, Berliner N . (2001). C/EBPɛ mediates myeloid differentiation and is regulated by the CCAAT displacement protein (CDP/cut). Proc Natl Acad Sci USA 98: 8000–8005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveran C, Maki RA . (1990). The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Koeffler HP, Amatruda T, Ikekawa N, Kobayashi Y, deLuca HF . (1984). Induction of macrophage differentiation of human normal and leukemic myeloid stem cells by 1,25-dihydroxy vitamin D3 and its fluorinated analogues. Cancer Res 44: 5624–5628.

    CAS  PubMed  Google Scholar 

  • Krishnaraju K, Hoffman B, Liebermann DA . (1998). The zinc finger transcription factor Egr-1 activates macrophage differentiation in M1 myeloblastic leukemia cells. Blood 92: 1957–1966.

    CAS  PubMed  Google Scholar 

  • Krishnaraju K, Hoffman B, Liebermann DA . (2001). Early growth factor response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 97: 298–305.

    Article  Google Scholar 

  • Krishnaraju K, Nguyen HQ, Liebermann DA, Hoffman B . (1995). The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells. Mol Cell Biol 15: 5499–5507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P et al. (2007). A two-step, PU.1 dependent, mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 27: 878–887.

    Article  CAS  PubMed  Google Scholar 

  • Kummalue T, Friedman AD . (2003). Cross-talk between regulators of myeloid development: C/EBPα binds and activates the promoter of the PU.1 gene. J Leuk Biol 72: 464–470.

    Article  CAS  Google Scholar 

  • Kunsch C, Lang RK, Rosen CA, Shannon MF . (1994). Synergistic transcriptional activation of the IL-8 gene by NF-κB p65 (RelA) and NF-IL-6. J Immunol 153: 153–164.

    CAS  PubMed  Google Scholar 

  • Labrecque J, Allan D, Chambon P, Iscove NN, Lohnes D, Hoang T . (1998). Impaired granulocytic differentiation in vitro in hematopoietic cells lacking retinoic acid receptors α1 and γ. Blood 92: 607–615.

    CAS  PubMed  Google Scholar 

  • Lacaud G, Carlsson L, Keller G . (1998). Identification of a fetal hematopoietic precursor with B cell, T cell, and macrophage potential. Immunity 9: 827–838.

    Article  CAS  PubMed  Google Scholar 

  • Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T . (2006). Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25: 731–744.

    Article  CAS  PubMed  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL . (1989). The DNA binding domain of the rat liver protein C/EBP is bipartite. Science 246: 1681–1688.

    Article  Google Scholar 

  • Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R et al. (2006). Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126: 755–766.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence HJ, Sauvageau G, Ahmadi N, Lopez AR, LeBeau MM, Link M et al. (1995). Stage- and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells. Exp Hematol 23: 1160–1166.

    CAS  PubMed  Google Scholar 

  • Lawson ND, Khanna-Gupta A, Berliner N . (1998). Isolation and characterization of the cDNA for mouse neutrophil collagenase: demonstration of shared negative regulatory pathways for neutrophil secondary granule protein gene expression. Blood 91: 2517–2524.

    CAS  PubMed  Google Scholar 

  • Lee SL, Wang Y, Milbrandt J . (1996). Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1). Mol Cell Biol 16: 4566–4572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leeanansaksiri W, Wang H, Gooya JM, Renn K, Abshri M, Tsai S et al. (2005). IL-3 induces inhibitor of DNA-binding protein-1 in hematopoietic progenitor cells and promotes myeloid cell development. J Immunol 174: 7014–7021.

    Article  CAS  PubMed  Google Scholar 

  • Lekstrom-Himes JA . (2001). The role of C/EBPɛ in the terminal stages of granulocyte differentiation. Stem Cells 19: 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI . (1999). Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein ɛ. J Exp Med 189: 1847–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li AC, Guidez FR, Collier JG, Glass CK . (1998). The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun. J Biol Chem 273: 5389–5399.

    Article  CAS  PubMed  Google Scholar 

  • Li J, King I, Sartorelli AC . (1994). Differentiation of WEHI-3B D+ myelomonocytic leukemia cells induced by ectopic expression of the protooncogene c-jun. Cell Growth Differ 5: 743–751.

    CAS  PubMed  Google Scholar 

  • Liew CW, Rand KD, Simpson RJ, Yung WW, Mansfield RE, Crossley M et al. (2006). Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1. J Biol Chem 281: 28296–28306.

    Article  CAS  PubMed  Google Scholar 

  • Lin FT, MacDougald OA, Diehl AM, Lane MD . (1993). A 30-kDa alternative translation product of the CCAAT/enhancer binding protein α message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci USA 90: 9606–9610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsey S, Huang W, Wang H, Horvath E, Zhu C, Eklund EA . (2007). Activation of the SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). J Biol Chem 282: 2237–2249.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Keefer JR, Wang Q, Friedman AD . (2003). Reciprocal effects of C/EBPα and PKCδ on JunB expression and monocytic differentiation depend upon the C/EBPα basic region. Blood 101: 3885–3892.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang D, Minemoto Y, Leitges M, Rosner MR, Lin A . (2006). NF-κB is required for UV-induced JNK activation via induction of PKCδ. Mol Cell 21: 467–480.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang L-H, Ronal Z . (2005). Receptor for RACK1 mediates activation of JNK by protein kinase C. Mol Cell 19: 309–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA . (1993). Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol 13: 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Skalnik DG . (1996). CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91phox promoter. J Biol Chem 271: 18203–18210.

    Article  CAS  PubMed  Google Scholar 

  • Maehara K, Hasegawa T, Xiao H, Takeuchi A, Abe R, Isobe K . (1999). Cooperative interaction of NF-κB and C/EBP binding sites is necessary for manganese superoxide dismutase gene transcription mediated by lipopolysaccharide and interferon-gamma. FEBS Lett 449: 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K . (2001). Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97: 3333–3341.

    Article  CAS  PubMed  Google Scholar 

  • Matsusaka T, Fujikaw K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T et al. (1993). Transcription factors NF-IL6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 90: 10193–10197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al. (1996). Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15: 5647–5658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meraro D, Gleit-Kielmanowicz M, Hauser H, Levi BZ . (2002). IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element. J Immunol 168: 6224–6231.

    Article  CAS  PubMed  Google Scholar 

  • Meraro D, Hashmueli S, Koren B, Azriel A, Oumard A, Kirchhoff S et al. (1999). Protein–protein and DNA–protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J Immunol 163: 6468–6478.

    CAS  PubMed  Google Scholar 

  • Miller M, Shuman JD, Sebastian T, Dauter Z, Johnson PF . 2003. Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein α. J Biol Chem 278: 15178–15184.

    Article  CAS  PubMed  Google Scholar 

  • Montecino-Rodriguez E, Leathers H, Dorshkind K . (2001). Bipotential B-macrophage progenitors are present in adult bone marrow. Nat Immunol 2: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Hamada M, Morito N, Terunuma T, Hasegawa K, Zhang C et al. (2006). MafB is essential for renal development and F4/80 expression in macrophages. Mol Cell Biol 26: 5715–5727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulton KS, Semple K, Wu H, Glass CK . (1994). Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol Cell Biol 14: 4408–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller C, Kowenz-Leutz E, Grieser-Ade S, Graf T, Leutz A . (1995). NF-M (chicken C/EBPβ) induces eosinophilic differentiation and apoptosis in a hematopoietic progenitor cell line. EMBO J 14: 6127–6135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK et al. (1991). Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1267–1279.

    Article  CAS  PubMed  Google Scholar 

  • Newman JR, Keating AE . (2003). Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300: 2097–2101.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HQ, Hoffman-Liebermann B, Liebermann D . (1993). The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 72: 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . (1994). PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14: 5558–5568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Shea EK, Lumb KJ, Kim PS . (1993). Peptide ‘velcro’ design of a heterodimeric coiled coil. Curr Biol 3: 658–667.

    Article  CAS  PubMed  Google Scholar 

  • Oelgeschläger M, Nuchprayoon I, Lüscher B, Friedman AD . (1996). C/EBP, c-myb, and PU.1 cooperate to regulate the neutrophil elastase promoter. Mol Cell Biol 16: 4717–4725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H et al. (2005). Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 25: 2832–2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz MA, Light J, Maki RA, Assa-Munt N . (1999). Mutation analysis of Pip interaction domain reveals critical residues for protein–protein interactions. Proc Natl Acad Sci USA 96: 2740–2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papin S, Cazeneuve C, Duquesnoy P, Jeru I, Sahali D, Amselem S . (2003). The tumor necrosis factor α-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between C/EBPβ and NF-κB p65. J Biol Chem 278: 48839–48847.

    Article  CAS  PubMed  Google Scholar 

  • Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF . (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 104: 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Paz-Priel I, Cai DH, Wang D, Kowalski J, Blackford A, Liu H et al. (2005). C/EBPα and C/EBPα myeloid oncoproteins induce Bcl-2 via interaction of their basic regions with NF-κB p50. Mol Cancer Res 3: 585–596.

    Article  CAS  PubMed  Google Scholar 

  • Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papdaki HA et al. (2003). Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34: 308–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce A, Heyworth CM, Nicholls SE, Spooncer E, Dexter TM, Lord JM et al. (1998). An activated protein kinase C α gives a differentiation signal for hematopoietic progenitor cells and mimicks macrophage colony-stimulating factor-stimulated signaling events. J Cell Biol 140: 1511–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porse BT, Bryder D, Theilgaard-Monch K, Hasemann MS, Anderson K, Damgaard I et al. (2005). Loss of C/EBPα cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med 202: 85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porse BT, Pedersen TA, Xu X, Lindberg B, Wewer UM, Friis-Hansen L et al. (2001). E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107: 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Radomska HS, Huettner CS, Zhang P, Tenen DG . (1998). CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic differentiation from bipotential myeloid cells. Mol Cell Biol 18: 4301–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangatia J, Vangala RK, Singh SM, Peer Zada AA, Elsasser A, Kohlmann A et al. 2003. Elevated c-Jun expression in acute myeloid leukemias inhibits C/EBPα DNA binding via leucine zipper domain interaction. Oncogene 22: 4760–4764.

    Article  CAS  PubMed  Google Scholar 

  • Rangatia J, Vangala RK, Treiber N, Zhang P, Radomska H, Tenen DG et al. (2002). Downregulation of c-Jun expression by transcription factor C/EBPα is critical for granulocytic lineage commitment. Mol Cell Biol 22: 8681–8694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VA, Iwama A, Iotzova G, Schulz M, Elsasser A, Vangala RK et al. (2002). Granulocyte inducer C/EBPα inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 100: 483–490.

    Article  CAS  PubMed  Google Scholar 

  • Rekhtman N, Choe KS, Matushansky I, Murray S, Stopka T, Skoultchi AI . (2003). PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol 23: 7460–7474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rekhtman N, Radparvar F, Evans T, Skoultchi AI . (1999). Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13: 1398–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roodman GD . (1996). Advances in bone biology: the osteoclast. Endocr Rev 17: 308–322.

    CAS  PubMed  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. (2004). Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genetics 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  • Ross SE, Radomska HS, Wu B, Zhang P, Winnay JN, Bajnok L et al. (2004). Phosphorylation of C/EBPα inhibits granulopoiesis. Mol Cell Biol 24: 675–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvageau G, Landsorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. (1994). Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 91: 12223–12227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H . (1994). Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  • Scott LM, Civin CI, Rorth P, Friedman AD . (1992). A novel temporal pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80: 1725–1735.

    CAS  PubMed  Google Scholar 

  • Sebastian T, Johnson PF . (2006). Stop and go: anti-proliferative and mitogenic functions of the transcription factor C/EBPβ. Cell Cycle 5: 953–957.

    Article  CAS  PubMed  Google Scholar 

  • Sha WC, Liou HC, Tuomanen EI, Baltimore D . (1995). Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Sharf R, Meraro D, Azriel A, Thornton AM, Ozato K, Petricoin EF et al. (1997). Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA. J Biol Chem 272: 9785–9792.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M . (2001). AP-1 in cell proliferation and survival. Oncogene 20: 2390–2400.

    Article  CAS  PubMed  Google Scholar 

  • Shimozaki K, Nakajima K, Hirano T, Nagata S . (1997). Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J Biol Chem 272: 25184–25189.

    Article  CAS  PubMed  Google Scholar 

  • Sieweke MH, Tekotte H, Frampton J, Graf T . (1996). MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85: 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Skalnik DG, Strauss EC, Orkin SH . (1991). CCAAT displacement protein as a repressor of the myelomonocytic-specific gp91-phox gene promoter. J Biol Chem 266: 16736–16744.

    CAS  PubMed  Google Scholar 

  • Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG . (1996). PU.1 (Spi-1) and C/EBPα regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88: 1234–1247.

    CAS  PubMed  Google Scholar 

  • Spain LM, Guerriero A, Kunjibettu S, Scott EW . (1999). T cell development in PU.1-deficient mice. J Immunol 163: 2681–2687.

    CAS  PubMed  Google Scholar 

  • Steidl U, Rosenbauer F, Verhaak RGW, Gu X, Ebralidze A, Out HH et al. (2006). Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nature Genet 38: 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  • Stein B, Cogswell PC, Baldwin Jr AS . (1993). Functional and physical association between NF-κB and C/EBP family members: a Rel domain–bZIP interaction. Mol Cell Biol 13: 3964–3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopka T, Amanatullah DF, Papetti M, Skoultchi AI . (2005). PU.1 inhibits the erythroid program by binding GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 24: 3712–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh C, Gooya J, Renn K, Friedman AD, Johnson PF, Keller JR . (2006). C/EBPα determines hematopoietic cell fate in multipotent progenitors by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 107: 4308–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo E, Preis LH, Birrer MJ . (1994). Constitutive c-Jun expression induces partial macrophage differentiation in U-937 cells. Cell Growth Differ 5: 439–446.

    CAS  PubMed  Google Scholar 

  • Taghon T, Stolz F, De Smedt M, Cnockaert M, Verhasselt B, Plum J et al. (2002). HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 99: 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  • Tagoh H, Ingram R, Wilson N, Salvagiotto G, Warren AJ, Clarke D et al. (2006). The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J 25: 1070–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Thotakura P, Tanaka TS, Ko MS, Ozato K . (2005). Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106: 1938–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taschner S, Koesters C, Platzer B, Jorgl A, Ellmeier W, Benesch T et al. (2007). Down-regulation of RXR* expression is essential for neutrophil development from granulocyte/monocyte progenitors. Blood 109: 971–979.

    Article  CAS  PubMed  Google Scholar 

  • Traver D, Miyamoto T, Christensen J, Iwasaki-Arai J, Akashi K, Weissman IL . (2001). Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood 98: 627–635.

    Article  CAS  PubMed  Google Scholar 

  • Tsai S, Collins SJ . (1993). A dominant negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage. Proc Natl Acad Sci USA 90: 7153–7157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimura H, Nagamura-Inoue T, Tamura T, Ozato K . (2002). IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells towards the macrophage lineage. J Immunol 169: 1261–1269.

    Article  CAS  PubMed  Google Scholar 

  • Umek RH, Friedman AD, McKnight SL . (1991). CCAAT/enhancer binding protein: a component of a differentiation switch. Science 25: 288–292.

    Article  Google Scholar 

  • Umesono K, Murakami KK, Thompson CC, Evans RM . (1991). Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1255–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson CR, Hai T, Boyd SM . (1993). Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev 7: 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  • Walkley CR, Purton LE, Snelling HJ, Yuan YD, Nakajima H, Chambon P et al. (2004). Identification of the molecular requirements for an RARα-mediated cell cycle arrest during granulocytic differentiation. Blood 103: 1286–1295.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, D'Costa J, Civin CI, Friedman AD . (2006). C/EBPα directs monocytic commitment of primary myeloid progenitors. Blood 108: 1223–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Cleaves R, Kummalue T, Nerlov C, Friedman AD . (2003). Cell cycle inhibition mediated by the outer surface of the C/EBPα basic region is required but not sufficient for granulopoiesis. Oncogene 22: 2548–2557.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Friedman AD . (2002). C/EBPs are required for granulopoiesis independent of their induction of the granulocyte-colony stimulating factor receptor. Blood 99: 2776–2785.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang X, Ward A, Touw I, Friedman AD . (2001). C/EBPα and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes. Leukemia 15: 779–786.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Scott E, Sawyers CL, Friedman AD . (1999). C/EBPα by-passes G-CSF signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32Dcl3 myeloblasts. Blood 94: 560–571.

    CAS  PubMed  Google Scholar 

  • Weston CR, Davis RJ . (2002). The JNK signal transduction pathway. Curr Opin Genet Dev 12: 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Williamson E, Xu HN, Gombart AF, Verbeek W, Chumakov AM, Friedman AD et al. (1998). Identification of transcriptional activation and repression domains in human CCAAT/enhancer-binding protein ɛ. J Biol Chem 273: 14796–14808.

    Article  CAS  PubMed  Google Scholar 

  • Xia C, Cheshire JK, Patel H, Woo P . (1997). Cross-talk between transcription factors NF-κB and C/EBP in the transcriptional regulation of genes. Int J Biochem Cell Biol 29: 1525–1539.

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Graf T . (2004). Stepwise reprogramming of B cells into macrophages. Cell 117: 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP, Eckhaus M et al. (1997). Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein ɛ-deficient mice. Proc Natl Acad Sci USA 94: 13187–13192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Wara-Aswapati N, Chen C, Tsukada J, Auron PE . (2000). NF-IL6 (C/EBPβ) vigorously activates IL-1β gene expression via a Spi-1 (PU.1) protein–protein tether. J Biol Chem 275: 21272–21277.

    Article  CAS  PubMed  Google Scholar 

  • Yeamans C, Wang D, Paz-Priel I, Torbett BE, Tenen DG, Friedman AD . (2007). C/EBPα binds and activates the PU.1 distal enhancer to induce monocyte lineage commitment. Blood (in press).

  • Yoshida K, Miki Y, Kufe D . (2002). Activation of SAPK/JNK signaling by protein kinase Cδ in response to DNA damage. J Biol Chem 277: 48372–48378.

    Article  CAS  PubMed  Google Scholar 

  • Zhang DE, Hetherington CJ, Chen HM, Tenen DG . (1994). The macrophage transcription factor PU.1 directs tissue-specific expression of the M-CSF receptor. Mol Cell Biol 14: 373–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . (1997). Absence of G-CSF signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc Natl Acad Sci USA 94: 569–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS et al. (1999). Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 96: 8705–8710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG . (1998). Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein α (C/EBPα) is critical for granulopoiesis. J Exp Med 188: 1173–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM et al. (2004). Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21: 853–863.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Nelson E, Radomska HS, Iwasaki-Arai J, Akashi K, Friedman AD et al. (2002). Induction of granulocytic differentiation by 2 pathways. Blood 99: 4406–4412.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU et al. (2000). PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96: 261–2648.

    Google Scholar 

  • Zou GM, Chen JJ, Yoder MC, Wu W, Rowley JD . (2006). Knockdown of PU.1 by small interfering RNA in CD34+ embryoid body cells derived from mouse ES cells turns cell fate determination to pro B-cells. Proc Natl Acad Sci USA 102: 13236–13241.

    Article  CAS  Google Scholar 

  • Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN . (1996). Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol 16: 4024–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AF is supported by the National Institutes of Health, the Samuel Waxman Cancer Research Foundation, and the Children's Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, A. Transcriptional control of granulocyte and monocyte development. Oncogene 26, 6816–6828 (2007). https://doi.org/10.1038/sj.onc.1210764

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210764

Keywords

This article is cited by

Search

Quick links