Skip to main content
Log in

A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface

  • PPS
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) are ubiquitous and essential in modulating virtually all physiological processes. These receptors share a similar structural design consisting of the seven-transmembrane α-helical segments. The active conformations of the receptors are stabilized by an agonist and couple to structurally highly conserved heterotrimeric G proteins. One of the most important unanswered questions is how GPCRs couple to their cognate G proteins. Phototransduction represents an excellent model system for understanding G protein signaling, owing to the high expression of rhodopsin in rod photoreceptors and the multidisciplinary experimental approaches used to study this GPCR. Here, we describe how a G protein (transducin) docks on to an oligomeric GPCR (rhodopsin), revealing structural details of this critical interface in the signal transduction process. This conceptual model takes into account recent structural information on the receptor and G protein, as well as oligomeric states of GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Gether, Uncovering molecular mechanisms involved in activation of G protein-coupled receptors, Endocr. Rev., 2000, 21, 90–113.

    Article  CAS  PubMed  Google Scholar 

  2. J. A. Ballesteros, L. Shi, J. A. Javitch, Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors, Mol. Pharmacol., 2001, 60, 1–19.

    Article  CAS  PubMed  Google Scholar 

  3. T. Mirzadegan, G. Benko, S. Filipek, K. Palczewski, Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin, Biochemistry, 2003, 42, 2759–2767.

    Article  CAS  PubMed  Google Scholar 

  4. K. L. Pierce, R. T. Premont, R. J. Lefkowitz, Seven-transmembrane receptors, Nat. Rev. Mol. Cell Biol., 2002, 3, 639–650.

    Article  CAS  PubMed  Google Scholar 

  5. S. Filipek, R. E. Stenkamp, D. C. Teller, K. Palczewski, G protein-coupled receptor rhodopsin: a prospectus, Annu. Rev. Physiol., 2003, 65, 851–879.

    Article  CAS  PubMed  Google Scholar 

  6. A. Polans, W. Baehr, K. Palczewski, Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina, Trends Neurosci., 1996, 19, 547–554.

    Article  CAS  PubMed  Google Scholar 

  7. T. Okada, K. Palczewski, Crystal structure of rhodopsin: implications for vision and beyond, Curr. Opin. Struct. Biol., 2001, 11, 420–426.

    Article  CAS  PubMed  Google Scholar 

  8. T. Okada, O. P. Ernst, K. Palczewski, K. P. Hofmann, Activation of rhodopsin: new insights from structural and biochemical studies, Trends Biochem. Sci., 2001, 26, 318–324.

    Article  CAS  PubMed  Google Scholar 

  9. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, Crystal structure of rhodopsin: a G protein-coupled receptor, Science, 2000, 289, 739–745.

    Article  CAS  PubMed  Google Scholar 

  10. D. C. Teller, T. Okada, C. A. Behnke, K. Palczewski, R. E. Stenkamp, Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs), Biochemistry, 2001, 40, 7761–7772.

    Article  CAS  PubMed  Google Scholar 

  11. S. Filipek, D. C. Teller, K. Palczewski, R. Stenkamp, The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors, Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 375–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Sondek, A. Bohm, D. G. Lambright, H. E. Hamm, P. B. Sigler, Crystal structure of a G-protein βγ dimer at 2.1 Å resolution, Nature, 1996, 379, 369–374.

    Article  CAS  PubMed  Google Scholar 

  13. J. J. Tesmer, R. K. Sunahara, A. G. Gilman, S. R. Sprang, Crystal structure of the catalytic domains of adenylyl cyclase in a complex with GsαGTPγS, Science, 1997, 278, 1907–1916.

    Article  CAS  PubMed  Google Scholar 

  14. D. G. Lambright, J. P. Noel, H. E. Hamm, P. B. Sigler, Structural determinants for activation of the α-subunit of a heterotrimeric G protein, Nature, 1994, 369, 621–628.

    Article  CAS  PubMed  Google Scholar 

  15. D. G. Lambright, J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, P. B. Sigler, The 2.0 Å crystal structure of a heterotrimeric G protein, Nature, 1996, 379, 311–319.

    Article  CAS  PubMed  Google Scholar 

  16. D. E. Coleman, A. M. Berghuis, E. Lee, M. E. Linder, A. G. Gilman, S. R. Sprang, Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis, Science, 1994, 265, 1405–1412.

    Article  CAS  PubMed  Google Scholar 

  17. C. Kleuss, A. S. Raw, E. Lee, S. R. Sprang, A. G. Gilman, Mechanism of GTP hydrolysis by G-protein α subunits, Proc. Natl. Acad. Sci. USA, 1994, 91, 9828–9831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. A. Wall, D. E. Coleman, E. Lee, J. A. Iniguez-Lluhi, B. A. Posner, A. G. Gilman, S. R. Sprang, The structure of the G protein heterotrimer Giα1β1γ2, Cell, 1995, 83, 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  19. D. E. Coleman, S. R. Sprang, Structure of Giα1.GppNHp, autoinhibition in a Gα protein-substrate complex, J. Biol. Chem., 1999, 274, 16669–16672.

    Article  CAS  PubMed  Google Scholar 

  20. K. D. Ridge, N. G. Abdulaev, M. Sousa, K. Palczewski, Phototransduction: crystal clear, Trends Biochem. Sci., 2003, 28, 479–487.

    Article  CAS  PubMed  Google Scholar 

  21. J. A. Hirsch, C. Schubert, V. V. Gurevich, P. B. Sigler, The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation, Cell, 1999, 97, 257–269.

    Article  CAS  PubMed  Google Scholar 

  22. J. Granzin, U. Wilden, H. W. Choe, J. Labahn, B. Krafft, G. Buldt, X-ray crystal structure of arrestin from bovine rod outer segments, Nature, 1998, 391, 918–921.

    Article  CAS  PubMed  Google Scholar 

  23. S. K. Milano, H. C. Pace, Y. M. Kim, C. Brenner, J. L. Benovic, Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis, Biochemistry, 2002, 41, 3321–3328.

    Article  CAS  PubMed  Google Scholar 

  24. K. Palczewski, Structure and functions of arrestins, Protein Sci., 1994, 3, 1355–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. C. Teller, R. E. Stenkamp, K. Palczewski, Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer, FEBS Lett., 2003, 555, 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Milligan, Oligomerisation of G-protein-coupled receptors, J. Cell Sci, 2001, 114, 1265–1271.

    Article  CAS  PubMed  Google Scholar 

  27. S. R. George, B. F. O’Dowd, S. P. Lee, G-protein-coupled receptor oligomerization and its potential for drug discovery, Nat. Rev. Drug Discovery, 2002, 1, 808–820.

    Article  CAS  PubMed  Google Scholar 

  28. S. Angers, A. Salahpour, M. Bouvier, Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function, Annu. Rev. Pharmacol. Toxicol., 2002, 42, 409–435.

    Article  CAS  PubMed  Google Scholar 

  29. C. D. Rios, B. A. Jordan, I. Gomes, L. A. Devi, G-protein-coupled receptor dimerization: modulation of receptor function, Pharmacol. Ther., 2001, 92, 71–87.

    Article  CAS  PubMed  Google Scholar 

  30. S. P. Lee, B. F. O’Dowd, S. R. George, Homo- and hetero-oligomerization of G protein-coupled receptors, Life Sci., 2003, 74, 173–180.

    Article  CAS  PubMed  Google Scholar 

  31. G. Milligan, D. Ramsay, G. Pascal, J. J. Carrillo, GPCR dimerisation, Life Sci., 2003, 74, 181–188.

    Article  CAS  PubMed  Google Scholar 

  32. B. Moepps, L. Fagni, Mont Sainte-Odile: a sanctuary for GPCRs. Confidence on signal transduction of G-protein-coupled receptors, EMBO Rep., 2003, 4, 237–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Bai, Dimerization of G-protein-coupled receptors: roles in signal transduction, Cell Signal., 2004, 16, 175–186.

    Article  CAS  PubMed  Google Scholar 

  34. S. Terrillon, M. Bouvier, Roles of G-protein-coupled receptor dimerization, EMBO Rep., 2004, 5, 30–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. E. Breitwieser, G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling, Circ. Res., 2004, 94, 17–27.

    Article  CAS  PubMed  Google Scholar 

  36. C. Bissantz, Conformational changes of G protein-coupled receptors during their activation by agonist binding, J. Recept. Signal. Transduct. Res., 2003, 23, 123–153.

    Article  CAS  PubMed  Google Scholar 

  37. D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, K. Palczewski, Atomic-force microscopy: rhodopsin dimers in native disc membranes, Nature, 2003, 421, 127–128.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Liang, D. Fotiadis, S. Filipek, D. A. Saperstein, K. Palczewski, A. Engel, Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes, J. Biol. Chem., 2003, 278, 21655–21662.

    Article  CAS  PubMed  Google Scholar 

  39. D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, K. Palczewski, The G protein-coupled receptor rhodopsin in the native membrane, FEBS Lett., 2004 in press.

    Google Scholar 

  40. D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, K. Palczewski, Biophysics (communication arising): Reply: Is rhodopsin dimeric in native retinal rods?, Nature, 2003, 426, 31.

    Article  CAS  Google Scholar 

  41. M. Chabre, R. Cone, H. Saibil, Biophysics: is rhodopsin dimeric in native retinal rods?, Nature, 2003, 426, 30–31.

    Article  CAS  PubMed  Google Scholar 

  42. O. Fritze, S. Filipek, V. Kuksa, K. Palczewski, K. P. Hofmann, O. P. Ernst, Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation, Proc. Natl. Acad. Sci. USA, 2003, 100, 2290–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. N. M. Giusto, S. J. Pasquare, G. A. Salvador, P. I. Castagnet, M. E. Roque, M. G. Ilincheta de Boschero, Lipid metabolism in vertebrate retinal rod outer segments, Prog. Lipid Res., 2000, 39, 315–391.

    Article  CAS  PubMed  Google Scholar 

  44. L. Saiz, M. L. Klein, Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations, Biophys. J., 2001, 81, 204–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. E. Hamm, The many faces of G protein signaling, J. Biol. Chem., 1998, 273, 669–672.

    Article  CAS  PubMed  Google Scholar 

  46. O. G. Kisselev, J. Kao, J. W. Ponder, Y. C. Fann, N. Gautam, G. R. Marshall, Light-activated rhodopsin induces structural binding motif in G protein α subunit, Proc. Natl. Acad. Sci. USA, 1998, 95, 4270–4275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. H. Elliott, S. J. Fliesler, A. J. Ghalayini, Cholesterol-dependent association of caveolin-1 with the transducin alpha subunit in bovine photoreceptor rod outer segments: disruption by cyclodextrin and guanosine 5′- O-(3-thiotriphosphate), Biochemistry, 2003, 42, 7892–7903.

    Article  CAS  PubMed  Google Scholar 

  48. K. S. Nair, N. Balasubramanian, V. Z. Slepak, Signal-dependent translocation of transducin, RGS9-1-Gβ5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors, Curr. Biol., 2002, 12, 421–425.

    Article  CAS  PubMed  Google Scholar 

  49. N. Balasubramanian, V. Z. Slepak, Light-mediated activation of Rac-1 in photoreceptor outer segments, Curr. Biol., 2003, 13, 1306–1310.

    Article  CAS  PubMed  Google Scholar 

  50. K. Seno, M. Kishimoto, M. Abe, Y. Higuchi, M. Mieda, Y. Owada, W. Yoshiyama, H. Liu, F. Hayashi, Light- and guanosine 5′-3- O-(thio)triphosphate-sensitive localization of a G protein and its effector on detergent-resistant membrane rafts in rod photoreceptor outer segments, J. Biol. Chem., 2001, 276, 20813–20816.

    Article  CAS  PubMed  Google Scholar 

  51. S. S. Karnik, H. G. Khorana, Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187, J. Biol. Chem., 1990, 265, 17520–17524.

    Article  CAS  PubMed  Google Scholar 

  52. L. Shi, J. A. Javitch, The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice, Proc. Natl. Acad. Sci. USA, 2004, 101, 440–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. W. L. Stone, C. C. Farnsworth, E. A. Dratz, A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments, Exp. Eye Res., 1979, 28, 387–397.

    Article  CAS  PubMed  Google Scholar 

  54. P. D. Calvert, V. I. Govardovskii, N. Krasnoperova, R. E. Anderson, J. Lem, C. L. Makino, Membrane protein diffusion sets the speed of rod phototransduction, Nature, 2001, 411, 90–94.

    Article  CAS  PubMed  Google Scholar 

  55. J. Sondek, D. G. Lambright, J. P. Noel, H. E. Hamm, P. B. Sigler, GTPase mechanism of Gproteins from the 1.7 Å crystal structure of transducin α-GDP-AIF−4, Nature, 1994, 372, 276–279.

    Article  CAS  PubMed  Google Scholar 

  56. H. E. Hamm, Molecular interactions between the photoreceptor G protein and rhodopsin, Cell Mol. Neurobiol., 1991, 11, 563–578.

    Article  CAS  PubMed  Google Scholar 

  57. H. E. Hamm, A. Gilchrist, Heterotrimeric G proteins, Curr. Opin. Cell Biol., 1996, 8, 189–196.

    Article  CAS  PubMed  Google Scholar 

  58. S. Acharya, Y. Saad, S. S. Karnik, Transducin-α C-terminal peptide binding site consists of C–D and E–F loops of rhodopsin, J. Biol. Chem., 1997, 272, 6519–6524.

    Article  CAS  PubMed  Google Scholar 

  59. K. Cai, Y. Itoh, H. G. Khorana, Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent, Proc. Natl. Acad. Sci. USA, 2001, 98, 4877–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Y. Itoh, K. Cai, H. G. Khorana, Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent, Proc. Natl. Acad. Sci. USA, 2001, 98, 4883–4887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O. P. Ernst, C. K. Meyer, E. P. Marin, P. Henklein, W. Y. Fu, T. P. Sakmar, K. P. Hofmann, Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin α and γ subunits, J. Biol. Chem., 2000, 275, 1937–1943.

    Article  CAS  PubMed  Google Scholar 

  62. E. P. Marin, A. G. Krishna, T. A. Zvyaga, J. Isele, F. Siebert, T. P. Sakmar, The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction, J. Biol. Chem., 2000, 275, 1930–1936.

    Article  CAS  PubMed  Google Scholar 

  63. E. Kostenis, F. Y. Zeng, J. Wess, Functional characterization of a series of mutant G protein αq subunits displaying promiscuous receptor coupling properties, J. Biol. Chem., 1998, 273, 17886–17892.

    Article  CAS  PubMed  Google Scholar 

  64. R. Arimoto, O. G. Kisselev, G. M. Makara, G. R. Marshall, Rhodopsin-transducin interface: studies with conformationally constrained peptides, Biophys. J., 2001, 81, 3285–3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. J. L. Baneres, J. Parello, Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein, J. Mol. Biol., 2003, 329, 815–829.

    Article  CAS  PubMed  Google Scholar 

  66. L. Barki-Harrington, L. M. Luttrell, H. A. Rockman, Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo, Circulation, 2003, 108, 1611–1618.

    Article  CAS  PubMed  Google Scholar 

  67. T. Iiri, Z. Farfel, H. R. Bourne, G-protein diseases furnish a model for the turn-on switch, Nature, 1998, 394, 35–38.

    Article  CAS  PubMed  Google Scholar 

  68. P. Rondard, T. Iiri, S. Srinivasan, E. Meng, T. Fujita, H. R. Bourne, Mutant G protein α subunit activated by Gβγ: a model for receptor activation?, Proc. Natl. Acad. Sci. USA, 2001, 98, 6150–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. J. Cherfils, M. Chabre, Activation of G-protein Gα subunits by receptors through Gα–Gβ and Gα–Gγ interactions, Trends Biochem. Sci., 2003, 28, 13–17.

    Article  CAS  PubMed  Google Scholar 

  70. I. Gomes, B. A. Jordan, A. Gupta, C. Rios, N. Trapaidze, L. A. Devi, G protein coupled receptor dimerization: implications in modulating receptor function, J. Mol. Med., 2001, 79, 226–242.

    Article  CAS  PubMed  Google Scholar 

  71. B. A. Jordan, L. A. Devi, G-protein-coupled receptor heterodimerization modulates receptor function, Nature, 1999, 399, 697–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. S. AbdAlla, H. Lother, A. el Massiery, U. Quitterer, Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness, Nat. Med., 2001, 7, 1003–1009.

    Article  CAS  PubMed  Google Scholar 

  73. S. AbdAlla, H. Lother, A. M. Abdel-tawab, U. Quitterer, The angiotensin II AT2 receptor is an AT1 receptor antagonist, J. Biol. Chem., 2001, 276, 39721–39726.

    Article  CAS  PubMed  Google Scholar 

  74. S. AbdAlla, H. Lother, U. Quitterer, AT1–receptor heterodimers show enhanced G-protein activation and altered receptor sequestration, Nature, 2000, 407, 94–98.

    Article  CAS  PubMed  Google Scholar 

  75. Z. J. Cheng, K. G. Harikumar, E. L. Holicky, L. J. Miller, Heterodimerization of type A and B cholecystokinin receptors enhance signaling and promote cell growth, J. Biol. Chem., 2003, 278, 52972–52979.

    Article  CAS  PubMed  Google Scholar 

  76. M. C. Overton, S. L. Chinault, K. J. Blumer, Oligomerization, biogenesis, and signaling is promoted by a Glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor, J. Biol. Chem., 2003, 278, 49369–49377.

    Article  CAS  PubMed  Google Scholar 

  77. D. Baylor, How photons start vision, Proc. Natl. Acad. Sci. USA, 1996, 93, 560–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. S. A. Vishnivetskiy, M. M. Hosey, J. L. Benovic, V. V. Gurevich, Mapping the arrestin–receptor interface: Structural elements responsible for receptor specificity of arrestin proteins, J. Biol. Chem., 2004, 279, 1262–1268.

    Article  CAS  PubMed  Google Scholar 

  79. D. T. Lodowski, J. A. Pitcher, W. D. Capel, R. J. Lefkowitz, J. J. Tesmer, Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gβγ, Science, 2003, 300, 1256–1262.

    Article  CAS  PubMed  Google Scholar 

  80. M. Rodbell, Nobel Lecture. Signal transduction: evolution of an idea, Biosci. Rep., 1995, 15, 117–133.

    Article  CAS  PubMed  Google Scholar 

  81. W. Schlegel, E. S. Kempner, M. Rodbell, Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins, J. Biol. Chem., 1979, 254, 5168–5176.

    Article  CAS  PubMed  Google Scholar 

  82. J. J. Carrillo, J. Pediani, G. Milligan, Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins, J. Biol. Chem., 2003, 278, 42578–42587.

    Article  CAS  PubMed  Google Scholar 

  83. P. K. Brown, I. R. Gibbons, G. Wald, The visual cells and visual pigment of the mudpuppy, necturus, J. Cell Biol., 1963, 19, 79–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Filipek et al., in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipek, S., Krzysko, K.A., Fotiadis, D. et al. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochem Photobiol Sci 3, 628–638 (2004). https://doi.org/10.1039/b315661c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b315661c

Navigation