Semin Thromb Hemost 2005; 31(2): 217-233
DOI: 10.1055/s-2005-869527
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.

Ectonucleotidases of CD39 Family Modulate Vascular Inflammation and Thrombosis in Transplantation

Simon C. Robson1 , 2 , Yan Wu2 , Xiaofeng Sun2 , Christoph Knosalla3 , Karen Dwyer2 , Keiichi Enjyoji2
  • 1Associate Professor, Vascular Biology and Transplantation Centers, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
  • 2Vascular Biology and Transplantation Centers, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
  • 3Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
26 April 2005 (online)

ABSTRACT

Transplantation results in exposure of the graft vasculature to warm and cold ischemia, followed by perfusion by circulating blood constituents and obligatory oxidant stress. Further graft injury occurs as consequences of acute humoral cellular rejection or chronic transplant vasculopathy, or both. Extracellular nucleotide stimulation of purinergic type 2 (P2) receptors are key components of platelet, endothelial cell (EC), and leukocyte activation resulting in vascular thrombosis and inflammation in vivo. CD39, the prototype nucleoside triphosphate diphosphohydrolase (NTPDase-1) is highly expressed on endothelium; in contrast, CD39L1/NTPDase-2 (a preferential adenosine triphosphatase [ATPase]) is found on vascular adventitial cells. Both ectoenzymes influence thrombogenesis by the regulated hydrolysis of extracellular nucleotides that differentially regulate P2-receptor activity and function in platelets and vascular cells. The intracytoplasmic domains of NTPDase-1 may also independently influence cellular activation and proliferation. NTPDase activity is substantively lost in the vasculature of injured or rejected grafts. A role for NTPDase-1 in thromboregulation has been validated by generation of mutant mice either null for cd39 or overexpressing human CD39. Administration of soluble NTPDase or induction of CD39 by adenoviral vectors, or both, are also of benefit in several models of transplantation. Administration of soluble CD39 or targeted expression may have future therapeutic application in transplantation-associated and other vascular diseases.

REFERENCES

  • 1 Luthje J. Origin, metabolism and function of extracellular adenine nucleotides in the blood (Review).  Klin Wochenschr. 1989;  67 317-327 , (published erratum appears in Klin Wochenschr 1989;67:558)
  • 2 Dubyak G R, Elmoatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides (Review).  Am J Physiol. 1993;  265 C577-C606
  • 3 Abbracchio M P, Burnstock G. Purinoceptors-are there families of P2X and P2Y purinoceptors (Review).  Pharmacol Ther. 1994;  64 445-475
  • 4 Harden T K, Lazarowski E R, Boucher R C. Release, metabolism and interconversion of adenine and uridine nucleotides: implications for G protein-coupled P2 receptor agonist selectivity.  Trends Pharmacol Sci. 1997;  18 43-46
  • 5 Weisman G A, Erb L, Garrad R C et al.. P2Y nucleotide receptors in the immune system: signaling by a P2Y(2) receptor in U937 monocytes.  Drug Dev Res. 1998;  45 222-228
  • 6 Robson S C, Enjyoji K, Goepfert C et al.. Modulation of extracellular nucleotide-mediated signaling by CD39/nucleoside triphosphate diphosphohydrolase-1 (Review).  Drug Dev Res. 2001;  53 193-207
  • 7 Kaczmarek E, Koziak K, Sevigny J et al.. Identification and characterization of CD39 vascular ATP diphosphohydrolase.  J Biol Chem. 1996;  271 33116-33122
  • 8 Sevigny J, Sundberg C, Braun N et al.. Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation.  Blood. 2002;  99 2801-2809
  • 9 Marcus A J, Broekman M J, Drosopoulos J HF et al.. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39.  J Clin Invest. 1997;  99 1351-1360
  • 10 Marcus A J, Broekman M J, Drosopoulos J H et al.. Metabolic control of excessive extracellular nucleotide accumulation by CD39/ecto-nucleotidase-1: implications for ischemic vascular diseases.  J Pharmacol Exp Ther. 2003;  305 9-16
  • 11 Robson S, Schulte am Esch II J, Bach F. Factors in xenograft rejection.  Ann N Y Acad Sci. 1999;  875 261-276
  • 12 Buell G, Collo G, Rassendren F. P2X receptors-an emerging channel family (Review).  Eur J Neurosci. 1996;  8 2221-2228
  • 13 Fredholm B B, Abbracchio M P, Burnstock G et al.. Nomenclature and classification of purinoreceptors.  Pharmacol Rev. 1994;  46 143-152
  • 14 Roman R M, Fitz J G. Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function (Review).  Gastroenterology. 1999;  116 964-979
  • 15 Palmer T M, Stiles G L. Adenosine receptors.  Neuropharmacology. 1995;  34 683-694
  • 16 Plesner L. Ecto-ATPases: identities and functions (Review).  Int Rev Cytol. 1995;  158 141-214
  • 17 Baurand A, Eckly A, Bari N et al.. Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors.  Thromb Haemost. 2000;  84 484-491
  • 18 Hourani S MO, Hall D A. Receptors for ADP on human blood platelets (Review).  Trends Pharmacol Sci. 1994;  15 103-107
  • 19 Fijnheer R, Boomgaard M N, van den Eertwegh A J et al.. Stored platelets release nucleotides as inhibitors of platelet function.  Thromb Haemost. 1992;  68 595-599
  • 20 Lages B, Weiss H J. Enhanced increases in cytosolic Ca2+ in ADP-stimulated platelets from patients with delta-storage pool deficiency-a possible indicator of interactions between granule-bound ADP and the membrane ADP receptor.  Thromb Haemost. 1997;  77 376-382
  • 21 Enjyoji K, Sevigny J, Lin Y et al.. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation.  Nat Med. 1999;  5 1010-1017
  • 22 Goepfert C, Sundberg C, Sevigny J et al.. Disordered cellular migration and angiogenesis in cd39-null mice.  Circulation. 2001;  104 3109-3115
  • 23 Zimmermann H. Two novel families of ectonucleotidases: molecular structure, catalytic properties and a search for function.  Trends Pharmacol Sci. 1999;  20 231-236
  • 24 Robson S, Sevigny J, Imai M, Enjyoji K. Thromboregulatory potential of endothelial CD39/nucleoside triphosphate diphosphohydrolase: modulation of purinergic signalling in platelets.  Emerging Therapeutic Targets. 2000;  4 155-171
  • 25 Zimmermann H. 5'-nucleotidase: molecular structure and functional aspects.  Biochem J. 1992;  285 345-365
  • 26 Resta R, Yamashita Y, Thompson L F. Ecto-enzyme and signaling functions of lymphocyte CD73.  Immunol Rev. 1998;  161 95-109
  • 27 Goding J W, Howard M C. Ecto-enzymes of lymphoid cells.  Immunol Rev. 1998;  161 5-10
  • 28 Kansas G S, Wood G S, Tedder T F. Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes.  J Immunol. 1991;  146 2235-2244
  • 29 Maliszewski C R, Delespesse G J, Schoenborn M A et al.. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization.  J Immunol. 1994;  153 3574-3583
  • 30 Favaloro E J. Differential expression of surface antigens on activated endothelium.  Immunol Cell Biol. 1993;  71 571-581
  • 31 Wang T -F, Guidotti G. CD39 is an ecto-(Ca2+, Mg 2+)-apyrase.  J Biol Chem. 1996;  271 9898-9901
  • 32 Pinsky D J, Broekman M J, Peschon J J et al.. Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain.  J Clin Invest. 2002;  109 1031-1040
  • 33 Handa M, Guidotti G. Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum).  Biochem Biophys Res Commun. 1996;  218 916-923
  • 34 Schulte am Esch II J, Sevigny J, Kaczmarek E et al.. Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity.  Biochemistry. 1999;  38 2248-2258
  • 35 Wang T F, Guidotti G. Golgi localization and functional expression of human uridine diphosphatase.  J Biol Chem. 1998;  273 11392-11399
  • 36 Zimmermann H, Beaudoir A R, Boller H et al.. Nomenclature for two families of novel ectonucleotidases. In: Vanduffel L Proceedings of the Second International Workshop on Ecto-ATPases and Related Ectonucleotidases Maastricht, The Netherlands; Shaker Publishing BV 2000: 1-8
  • 37 Zimmermann H, Braun N, Heine P et al.. Molecular and functional properties of E-NTPDase-1, E-NTPDase-2 and 5'-ectonucleotidase. In: Vanduffel, L. Proceedings of the Second International Workshop on Ecto-ATPases and Related Ectonucleotidases Maastricht, The Netherlands; Shaker Publishing BV 2000: 18-25
  • 38 Wang T F, Handa M, Guidotti G. Structure and function of ectoapyrase (CD39).  Drug Dev Res. 1998;  45 245-252
  • 39 Chadwick B P, Frischauf A M. The CD39-like gene family-identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster .  Genomics. 1998;  50 357-367
  • 40 Mulero J J, Yeung G, Nelken S T, Ford J E. CD39L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates.  J Biol Chem. 1999;  274 20064-20067
  • 41 Kaneider N C, Egger P, Dunzendorfer S et al.. Reversal of thrombin-induced deactivation of CD39/ATPDase in endothelial cells by HMG-CoA reductase inhibition: effects on Rho-GTPase and adenosine nucleotide metabolism.  Arterioscler Thromb Vasc Biol. 2002;  22 894-900
  • 42 Vigne P, Breittmayer J P, Frelin C. Analysis of the influence of nucleotidases on the apparent activity of exogenous ATP and ADP at P2Y(1) receptors.  Br J Pharmacol. 1998;  125 675-680
  • 43 Sasamura H, Dzau V J, Pratt R E. Desensitization of angiotensin receptor function.  Kidney Int. 1994;  46 1499-1501
  • 44 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s (Review).  Nature. 1993;  362 801-809
  • 45 Marcus A J. Pathogenesis of atherosclerosis: special pathogenetic factors-inflammation and immunity: platelets. In: Fuster V, Ross R, Topol EJ Atherosclerosis and Coronary Artery Disease Philadelphia; Lippincott-Raven 1996: 607-637
  • 46 Guerci B, Kearney-Schwartz A, Bohme P, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes. Part 1: physiology and methods for exploring the endothelial function (Review).  Diabetes Metab. 2001;  27 425-434
  • 47 Robson S C, Candinas D, Hancock W W et al.. Role of endothelial cells in transplantation (Review).  Int Arch Allergy Immunol. 1995;  106 305-322
  • 48 Platt J L, Lin S S, McGregor C GA. Acute vascular rejection. (Review).  Xenotransplantation. 1998;  5 169-175
  • 49 Platt J L. New directions for organ transplantation (Review).  Nature. 1998;  392 11-17
  • 50 Cotran R S, Pober J S. Effects of cytokines on vascular endothelium: their role in vascular and immune injury.  Kidney Int. 1989;  35 969-975
  • 51 Pober J S, Cotran R S. The role of endothelial cells in inflammation.  Transplantation. 1990;  50 537-544
  • 52 Bevalicqua M P, Gimbrone M AJ. Modulation of endothelial cell procoagulant and fibrinolytic activities by inflammatory mediators. In: Ryan US Endothelial Cells Boca Raton, FL; CRC Press 1988: 107-118
  • 53 Pober J S, Cotran R S. Cytokines and endothelial cell biology (Review).  Physiol Rev. 1990;  70 427-451
  • 54 Bach F H, Robson S C, Ferran C et al.. Endothelial cell activation and thromboregulation during xenograft rejection (Review).  Immunol Rev. 1994;  141 5-30
  • 55 Dalmasso A P. The complement system in xenotransplantation (Review).  Immunopharmacology. 1992;  24 149-160
  • 56 Baldwin W M, Pruitt S K, Brauer R B, Daha M R, Sanfilippo F. Complement in organ transplantation - contributions to inflammation, injury, and rejection (Review).  Transplantation. 1995;  59 797-808
  • 57 Murdoch C, Finn A. Chemokine receptors and their role in vascular biology (Review).  J Vasc Res. 2000;  37 1-7
  • 58 Albelda S M, Smith C W, Ward P A. Adhesion molecules and inflammatory injury (Review).  FASEB J. 1994;  8 504-512
  • 59 Esmon C T. Cell mediated events that control blood coagulation and vascular injury (Review).  Annu Rev Cell Biol. 1993;  9 1-26
  • 60 Savage C O, Hughes C C, McIntyre B W, Picard J K, Pober J S. Human CD4+ T cells proliferate to HLA-DR+ allogeneic vascular endothelium. Identification of accessory interactions.  Transplantation. 1993;  56 128-134
  • 61 Murray A G, Khodadoust M M, Pober J S, Bothwell A LM. Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and co-stimulation by ligands for human CD2 and CD28.  Immunity. 1994;  1 57-63
  • 62 Bach F H, Robson S C, Ferran C et al.. Endothelial cell activation and thromboregulation during xenograft rejection (Review).  Immunol Rev. 1994;  141 5-30
  • 63 Crawford J M. Cellular and molecular biology of the inflamed liver (Review).  Curr Opin Gastroenterol. 1997;  13 175-185
  • 64 Cotran R S, Pober J S. Cytokine-endothelial interactions in inflammation, immunity, and vascular injury.  J Am Soc Nephrol. 1990;  1 225-235
  • 65 Bilzer M, Gerbes A L. Preservation injury of the liver: mechanisms and novel therapeutic strategies (Review).  J Hepatol. 2000;  32 508-515
  • 66 Game D S, Warrens A N, Lechler R I. Rejection mechanisms in transplantation (Review).  Wien Klin Wochenschr. 2001;  113 832-838
  • 67 Serracino-Inglott F, Habib N A, Mathie R T. Hepatic ischemia-reperfusion injury (Review).  Am J Surg. 2001;  181 160-166
  • 68 Horie Y, Wolf R, Anderson D C, Granger D N. Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion.  J Clin Invest. 1997;  99 781-788
  • 69 Lentsch A B, Kato A, Yoshidome H, McMasters K M, Edwards M J. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury (Review).  Hepatology. 2000;  32 169-173
  • 70 Cywes R, Mullen J B, Stratis M A et al.. Prediction of the outcome of transplantation in man by platelet adherence in donor liver allografts. Evidence of the importance of prepreservation injury.  Transplantation. 1993;  56 316-323
  • 71 Pinsky D J, Yan S F, Lawson C et al.. Hypoxia and modification of the endothelium - implications for regulation of vascular homeostatic properties (Review).  Semin Cell Biol. 1995;  6 283-294
  • 72 Lu C Y, Penfield J G, Kielar M L, Vazquez M A, Jeyarajah D R. Hypothesis: Is renal allograft rejection initiated by the response to injury sustained during the transplant process (Review).  Kidney Int. 1999;  55 2157-2168
  • 73 Lechler R I, Lombardi G, Batchelor J R, Reinsmoen N, Bach F H. The molecular basis of alloreactivity (Review).  Immunol Today. 1990;  11 83-88
  • 74 Bach F H. Reconsideration of the mechanism of first-set vascularized allograft rejection (Review).  Hum Immunol. 1990;  28 263-269
  • 75 Brindle N. Role of vascular endothelial cells in the allograft response.  Eye. 1995;  9 167-172
  • 76 Grey S T, Hancock W W. A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein c by human mononuclear phagocytes.  J Immunol. 1996;  156 2256-2263
  • 77 Gamry Jr E R, Mehra M R. Transplantation. 2004 77(9 Suppl): S68-S74
  • 78 Demetris A J, Murase N, Lee R G et al.. Chronic rejection. A general overview of histopathology and pathophysiology with emphasis on liver, heart and intestinal allografts.  Ann Transplant. 1997;  2 27-44
  • 79 Hosenpud J D. Immune mechanisms of cardiac allograft vasculopathy: an update.  Transpl Immunol. 1993;  1 237-249
  • 80 Libby P, Pober J S. Chronic rejection.  Immunity. 2001;  14 387-397
  • 81 Alexander R W. Oxidized LDL autoantibodies, endothelial dysfunction, and transplant-associated arteriosclerosis (Comment).  Arterioscler Thromb Vasc Biol. 2002;  22 1950-1951
  • 82 Calne R Y. Organ transplantation between widely disparate species.  Transplant Proc. 1970;  2 550-556
  • 83 Sachs D H, Sykes M, Robson S C, Cooper D KC. Xenotransplantation (Review).  Adv Immunol. 2001;  79 129-223
  • 84 Bach F H, Winkler H, Ferran C, Hancock W W, Robson S C. Delayed xenograft rejection (Review).  Immunol Today. 1996;  17 379-384
  • 85 Robson S C, Cooper D KC, d’Apice A JF. Disordered regulation of coagulation and platelet activation in xenotransplantation (Review).  Xenotransplantation. 2000;  7 166-176
  • 86 Robson S C. Acute vascular rejection/delayed xenograft rejection and consumptive coagulopathy in xenotransplantation (Review).  Curr Opin Organ Transplantation March. 2003;  8 76-82
  • 87 Imai M, Takigami K, Guckelberger O et al.. CD39/vascular ATP diphosphohydrolase modulates xenograft survival.  Transplant Proc. 2000;  32 969
  • 88 Candinas D, Koyamada N, Miyatake T et al.. Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions.  Thromb Haemost. 1996;  76 807-812
  • 89 Guckelberger O, Sun X, Sévigny J et al.. Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia-reperfusion injury.  Thromb Haemost. 2004;  91 576-586
  • 90 Jacobson J, Odlind B, Tufveson G, Wahlberg J. Effects of cold ischemia and reperfusion on trapping of erythrocytes in the rat kidney.  Transplantation International. 1988;  1 75-79
  • 91 Land W, Schneeberger H, Schleibner S et al.. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants.  Transplantation. 1994;  57 211-217
  • 92 Adams D H, Wang L, Hubscher S G, Neuberger J M. Hepatic endothelial cells.  Transplantation. 1989;  47 479-482
  • 93 Neil D A, Adams D H, Gunson B, Hubscher S G. Is chronic rejection of liver transplants different from graft arteriosclerosis of kidney and heart transplants?.  Transplant Proc. 1997;  29 2539-2540
  • 94 Clavien P A, Harvey P, Strasberg S M. Preservation and reperfusion injuries in liver allografts.  Transplantation. 1992;  53 957-978
  • 95 Clavien P A. Sinusoidal endothelial cell injury during hepatic preservation and reperfusion (Review).  Hepatology. 1998;  28 281-285
  • 96 Pinsky D J, Mehmet C O, Koga S et al.. Cardiac preservation is enhanced in a heterotopic rat transplant model by supplementing the nitric oxide pathway.  J Clin Invest. 1994;  93 2291-2297
  • 97 Jeannet M, Pinn V W, Flax M H, Winn H J, Russell P S. Humoral antibodies in renal allotransplantation in man.  N Engl J Med. 1970;  282 111-117
  • 98 Colvin R B. The pathogenesis of vascular rejection.  Transplant Proc. 1991;  23 2052-2055
  • 99 Alexandre G P. From ABO-incompatible human renal transplantation to xenotransplantation.  Xenotransplantation. 2004;  11 233-236
  • 100 Billingham M E. Graft coronary disease-old and new dimensions.  Cardiovasc Pathol. 1997;  6 95-101
  • 101 Miyatake T, Koyamada N, Hancock W W, Soares M P, Bach F H. Survival of accommodated cardiac xenografts upon retransplantation into cyclosporine-treated recipients.  Transplantation. 1998;  65 1563-1569
  • 102 Lin Y, Soares M P, Sato K et al.. Accommodated xenografts survive in the presence of anti-donor antibodies and complement that precipitate rejection of naive xenografts.  J Immunol. 1999;  163 2850-2857
  • 103 Soares M P, Lin Y, Anrather J et al.. Expression of heme oxygenase-1 can determine cardiac xenograft survival.  Nat Med. 1998;  4 1073-1077
  • 104 Hancock W W, Gee D, de Moerloose P et al.. Immunohistochemical analysis of serial biopsies taken during human renal allograft rejection: changing profile of infiltrating cells and involvement of the coagulation system.  Transplantation. 1985;  39 430-438
  • 105 Edwards R L, Rickles F R. The role of leukocytes in the activation of blood coagulation (Review).  Semin Hematol. 1992;  29 202-212
  • 106 Platt J L, Bach F H. Discordant xenografting: challenges and controversies (Review).  Curr Opin Immunol. 1991;  3 735-739
  • 107 Platt J L. Xenotransplantation-recent progress and current perspectives (Review).  Curr Opin Immunol. 1996;  8 721-728
  • 108 Taniguchi S, Cooper D. Clinical xenotransplantation-past, present and future (Review).  Ann R Coll Surg Engl. 1997;  79 13-19
  • 109 Goodman D J, Pearse M J, Dapice A JF. Overcoming hyperacute xenograft rejection with transgenic animals (Review).  BioDrugs. 1998;  9 219-234
  • 110 Dorling A, Lechler R I. Prospects for xenografting (Review).  Curr Opin Immunol. 1994;  6 765-769
  • 111 Dalmasso A P, Vercellotti G M, Fischel R J et al.. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients.  Am J Pathol. 1992;  140 1157-1166
  • 112 Galili U. Interaction of the natural anti-gal antibody with alpha-galactosyl epitopes-a major obstacle for xenotransplantation in humans.  Immunol Today. 1993;  14 480-482
  • 113 Cooper D KC, Ye Y, Niekrasz M et al.. Specific intravenous carbohydrate therapy-a new concept in inhibiting antibody-mediated rejection experience with ABO-incompatible cardiac allografting in the baboon.  Transplantation. 1993;  56 769-777
  • 114 Cooper D KC, Koren E, Oriol R. α-galactosyl oligosaccharides and discordant xenografting.  Xeno. 1994;  2 32-38
  • 115 Rosengard A M, Cary N R, Langford G A et al.. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs. A potential approach for preventing xenograft rejection.  Transplantation. 1995;  59 1325-1333
  • 116 Sandrin M S, Fodor W L, Mouhtouris E et al.. Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis.  Nat Med. 1995;  1 1261-1267
  • 117 Sandrin M S, Fodor W L, Cohney S et al.. Reduction of the major porcine xenoantigen ga1-alpha(1,3)gal by expression of alpha(1,2)fucosyltransferase.  Xenotransplantation. 1996;  3 134-140
  • 118 Byrne G, McCurry K R, Martin M J et al.. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage.  Transplantation. 1997;  63 149-155
  • 119 Diamond L E, Mccurry K R, Martin M J et al.. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium.  Transplantation. 1996;  61 1241-1249
  • 120 Hancock W W. Delayed xenograft rejection.  World J Surg. 1997;  21 917-923
  • 121 Li Y, Csizmadia E, Sevigny J, Enjyoji K, Robson S C. CD39 (NTPDase1) modulates allograft rejection and cellular immune responses.  American Journal of Transplantation. 2003;  3(suppl) 545
  • 122 Dwyer K M, Robson S C, Nandurkar H H et al.. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation.  J Clin Invest. 2004;  113 1440-1446
  • 123 Bakker W, Mui K, van Son W. Detection of glomerular ischemia in chronic graft failure by quantification of the glomerular ectonucleotidase and ecto-ATPase. In: Vanduffel, L. Proceedings of the Second International Workshop on Ecto-ATPases and Related Ectonucleotidases Maastricht, The Netherlands; Shaker Publishing BV 2000: 44-49
  • 124 Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis (Review).  J Biol Chem. 2000;  275 1521-1524
  • 125 Imai M, Takigami K, Guckelberger O et al.. Modulation of nucleotide triphosphate diphosphohydrolase-1 (NTPDase-1)/cd39 in xenograft rejection.  Mol Med. 1999;  5 743-752
  • 126 Imai M, Kaczmarek E, Koziak K et al.. Suppression of ATP diphosphohydrolase/CD39 in human vascular endothelial cells.  Biochemistry. 2000;  38 13473-13479
  • 127 Robson S C, Kaczmarek E, Siegel J B et al.. Loss of ATP diphosphohydrolase activity with endothelial cell activation.  J Exp Med. 1997;  185 153-163
  • 128 Robson S C, Daoud S, Begin M et al.. Modulation of vascular ATP diphosphohydrolase by fatty acids.  Blood Coagul Fibrinolysis. 1997;  8 21-27
  • 129 Imai M, Takigami K, Guckelberger O et al.. Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival.  Transplantation. 2000;  70 864-870
  • 130 Gangadharan S P, Imai M, Rhynhart K K et al.. Targeting platelet aggregation: CD39 gene transfer augments nucleoside triphosphate diphosphohydrolase activity in injured rabbit arteries.  Surgery. 2001;  130 296-303
  • 131 Dwyer K M, Robson S C, Nandurkar H H et al.. Inhibition of thrombosis in transgenic mice expressing human CD39.  American Journal of Transplantation. 2003;  3(suppl) 468
  • 132 Koyamada N, Miyatake T, Candinas D et al.. Apyrase administration prolongs discordant xenograft survival.  Transplantation. 1996;  62 1739-1743
  • 133 Koziak K, Kaczmarek E, Kittel A et al.. Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveolae.  J Biol Chem. 2000;  275 2057-2062
  • 134 Kittel A, Kaczmarek E, Sevigny J et al.. CD39 as a caveolar-associated ectonucleotidase.  Biochem Biophys Res Commun. 1999;  262 596-599
  • 135 Shaul P W, Anderson R GW. Role of plasmalemmal caveolae in signal transduction (Review).  Am J Physiol Lung Cell Mol Physiol. 1998;  19 L843-L851
  • 136 Hall R A, Ostedgaard L S, Premont R T et al.. A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.  Proc Natl Acad Sci U S A. 1998;  95 8496-8501
  • 137 Hung A Y, Sheng M. PDZ domains: structural modules for protein complex assembly.  J Biol Chem. 2002;  277 5699-5702
  • 138 Saras J, Heldin C H. PDZ domains bind carboxy-terminal sequences of target proteins.  Trends Biochem Sci. 1996;  21 455-458
  • 139 Nourry C, Grant S G, Borg J P. PDZ domain proteins: plug and play! (Review).  Sci STKE. 2003;  2003 RE7
  • 140 Fan J S, Zhang M. Signaling complex organization by PDZ domain proteins.  Neurosignals. 2002;  11 315-321
  • 141 Zhong X T, Malhotra R, Guidotti G. Regulation of yeast ectoapyrase Ynd1p activity by activator subunit Vma13p of vacuolar H+ -ATPase.  J Biol Chem. 2000;  275 35592-35599
  • 142 Wang D K, Li Z B, Messing E M, Wu G. Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM.  J Biol Chem. 2002;  277 36216-36222
  • 143 Goepfert C, Imai M, Brouard S et al.. CD39 modulates endothelial cell activation and apoptosis.  Mol Med. 2000;  6 591-603
  • 144 Erb L, Liu J, Ockerhausen J et al.. An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(0)-mediated signal transduction.  J Cell Biol. 2001;  153 491-501
  • 145 Teixeira A, Chaverot N, Schroder C et al.. Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes.  J Neurochem. 1999;  72 120-128
  • 146 Mizumoto N, Kumamoto T, Robson S C et al.. CD39 is the dominant Langerhans cell associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness.  Nat Med. 2002;  8 358-365

S. C RobsonM.D. Ph.D. 

Transplantation Center, Research North 99 Brookline Avenue

Room 301, Beth Israel Deaconess Medical Center, Boston, MA 02215

Email: srobson@bidmc.harvard.edu

    >