Semin Liver Dis 2007; 27(3): 282-294
DOI: 10.1055/s-2007-985073
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Inborn Errors of Bile Acid Metabolism

James E. Heubi1 , Kenneth D.R. Setchell1 , Kevin E. Bove1
  • 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, and Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
Further Information

Publication History

Publication Date:
08 August 2007 (online)

ABSTRACT

Bile acids are synthesized by the liver from cholesterol through a complex series of reactions involving at least 14 enzymatic steps. A failure to perform any of these reactions will block bile acid production with failure to produce “normal bile acids” and, instead, result in the accumulation of unusual bile acids and intermediary metabolites. Failure to synthesize bile acids leads to reduced bile flow and decreased intraluminal solubilization of fat and fat-soluble vitamins. In some circumstances, the intermediates created because of blockade in the bile acid biosynthetic pathway may be toxic to hepatocytes. Nine recognized inborn errors of bile acid metabolism have been identified that lead to enzyme deficiencies and impaired bile acid synthesis in infants, children, and adults. Patients may present with neonatal cholestasis, neurologic disease, or fat and fat-soluble vitamin malabsorption. If untreated, progressive liver disease may develop or reduced intestinal bile acid concentrations may lead to serious morbidity or mortality. This review focuses on a description of the disorders of bile acid synthesis that are directly related to single defects in the metabolic pathway, their proposed pathogenesis, treatment, and prognosis.

REFERENCES

  • 1 Setchell K DR, Kritchevsky D, Nair P P. The Bile Acids: Methods and Applications. New York, NY; Plenum Press 1988
  • 2 Setchell K DR, Street J M. Inborn errors of bile acid synthesis.  Semin Liver Dis. 1987;  7 85-99
  • 3 Russell D W, Setchell K DR. Bile acid biosynthesis.  Biochemistry. 1992;  31 4737-4749
  • 4 Setchell K DR, O'Connell N C. Inborn errors of bile acid metabolism. In: Suchy FJ Liver Disease in Children. St. Louis, MO; Mosby-Yearbook Inc 1994: 835-851
  • 5 Setchell K DR. Disorders of bile acid synthesis and metabolism. In: Walker WA, Durie PR, Hamilton JR, et al Pediatric Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. Philadelphia, PA: BC Decker Inc 1996: 1205-1233
  • 6 Clayton P T, Leonard J V, Lawson A M et al.. Familial giant cell hepatitis associated with synthesis of 3 beta, 7 alphadihydroxy-and 3 beta,7 alpha, 12 alpha-trihydroxy-5-cholenoic acids.  J Clin Invest. 1987;  79 1031-1038
  • 7 Setchell K DR, Suchy F J, Welsh M B et al.. Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis: a new inborn error in bile acid synthesis.  J Clin Invest. 1988;  82 2148-2157
  • 8 Shneider B L, Setchell K DR, Whitington P F et al.. Delta 4-3-oxosteroid 5 beta-reductase deficiency causing neonatal liver failure and hemochromatosis.  J Pediatr. 1994;  124 234-238
  • 9 Setchell K DR, Schwarz M, O'Connell N C et al.. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease.  J Clin Invest. 1998;  102 1690-1703
  • 10 Setchell K DR, O'Connell N C, Squires R H, Heubi J E. Congenital defects in bile acid synthesis cause a spectrum of diseases manifest as severe cholestasis, neurological disease, and fat-soluble vitamin malabsorption. In: Northfield TC, Ahmed H, Jazwari R, Zentler-Munro P Bile Acids in Hepatobiliary Disease. Dordrecht, The Netherlands; Kluwer Academic Publishers 1999: 55-63
  • 11 Setchell K DR, Heubi J E, O'Connell N C et al.. Identification of a unique inborn error in bile acid conjugation involving a deficiency in amidation. In: Paumgartner G, Stiehl A, Gerok W Bile Acids in Hepatobiliary Diseases: Basic Research and Clinical Application. Dordrecht, The Netherlands; Kluwer Academic Publishers 1997: 43-47
  • 12 Clayton P T, Johnson A W, Mills K A et al.. Ataxia associated with increased plasma concentrations of pristanic acid, phytanic acid and C27 bile acids but normal fibroblast branched-chain fatty acid oxidation.  J Inherit Metab Dis. 1996;  19 761-768
  • 13 Setchell K DR, Heubi J E, Bove K E et al.. Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy.  Gastroenterology. 2003;  124 217-232
  • 14 Boyer J L. New concepts of mechanisms of hepatocyte bile formation.  Physiol Rev. 1980;  60 303-326
  • 15 Stieger B, Zhang J, O'Neill B et al.. Transport of taurine conjugates of 7alpha-hydroxy-3-oxo-4-cholenoic acid and 3beta,7alpha-dihydroxy-5-cholenoic acid in rat liver plasma membrane vesicles. In: Van Berge-Henegouwen GP, Van Hock B, De Groote J, et al Cholestatic Liver Diseases. Dordrecht, The Netherlands; Kluwer Academic Press 1994: 82-87
  • 16 Klyne W. The Chemistry of the Steroids. London; Methuen and Co Ltd 1957
  • 17 Bjorkhem I. Mechanism of bile acid biosynthesis in mammalian liver. In: Danielsson H, Sjovall J Sterols and Bile Acids. Amsterdam, The Netherlands; BV Elsevier Science Publishers 1985: 231-277
  • 18 Lester R, St. Pyrek J, Little J M, Adcock E W. Diversity of bile acids in the fetus and newborn infant.  J Pediatr Gastroenterol Nutr. 1983;  2 355-364
  • 19 Setchell K DR, Dumaswala R, Colombo C, Ronchi M. Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile.  J Biol Chem. 1988;  263 16637-16644
  • 20 Sjovall J. Dietary glycine and taurine conjugation in man.  Proc Soc Exp Biol Med. 1959;  100 676-678
  • 21 LaRusso N F, Korman M G, Hoffman N E, Hofmann A F. Dynamics of the enterohepatic circulation of bile acids: postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption.  N Engl J Med. 1974;  291 689-692
  • 22 Setchell K DR, Street J M, Sjovall J. Fecal bile acids. In: Setchell KDR, Kritchevsky D, Nair PP The Bile Acids: Methods and Applications. New York, NY; Plenum Press 1988: 441-570
  • 23 Watkins J B, Ingall D, Szczepanik P et al.. Bile-salt metabolism in the newborn: measurement of pool size and synthesis by stable isotope technique.  N Engl J Med. 1973;  288 431-434
  • 24 Watkins J B, Szczepanik P, Gould J B et al.. Bile salt metabolism in the human premature infant: preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital.  Gastroenterology. 1975;  69 706-713
  • 25 Heubi J E, Balistreri W F, Suchy F J. Bile salt metabolism in the first year of life.  J Lab Clin Med. 1982;  100 127-136
  • 26 Watkins J B, Jarvenpaa A L, Szczepanik-Van Leeuwen P et al.. Feeding the low-birth weight infant: V. Effects of taurine, cholesterol, and human milk on bile acid kinetics.  Gastroenterology. 1983;  85 793-800
  • 27 Clayton P T, Casteels M, Mieli-Vergani G, Lawson A M. Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis?.  Pediatr Res. 1995;  37 424-431
  • 28 Bowen P, Lee C SN, Zellweger H, Lindenberg R. A familial syndrome of multiple congenital defects.  Bull Johns Hopkins Hosp. 1964;  114 402-414
  • 29 Lazarow P B, Moser H W. Disorders of peroxisome biogenesis. In: Scriver CR, Beaudet AL, Sly WS The Metabolic Basis of Inherited Disease. New York, NY; McGraw-Hill 1989: 1479-1509
  • 30 Smith D W, Lemli L, Opitz J M. A newly recognized syndrome of multiple congenital anomalies.  J Pediatr. 1964;  64 210-217
  • 31 Setchell K DR, O'Connell N C. Disorders of bile acid synthesis and metabolism. In: Walker WA, Durie PR, Hamilton JR, et al Pediatric Gastrointestinal Disease. Pathophysiology, Diagnosis, Management. Phildelphia, PA; BC Decker Inc 2000: 1138-1171
  • 32 Van Bogaert L, Scherer H J, Epstein E. Une Forme Cerebrale de la Cholesterinose Generalisee. Paris, France; Masson et Cie 1937
  • 33 Cali J J, Russell D W. Characterization of human sterol 27-hydroxylase: a mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis.  J Biol Chem. 1991;  266 7774-7778
  • 34 Egestad B, Pettersson P, Skrede S, Sjovall J. Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis.  Scand J Clin Lab Invest. 1985;  45 443-446
  • 35 Salen G, Shefer S, Tint G S et al.. Biosynthesis of bile acids in cerebrotendinous xanthomatosis: relationship of bile acid pool sizes and synthesis rates to hydroxylations at C-12, C-25, and C-26.  J Clin Invest. 1985;  76 744-751
  • 36 Koopman B J, van der Molen J C, Wolthers B G et al.. Capillary gas chromatographic determination of cholestanol/cholesterol ratio in biological fluids: its potential usefulness for the follow-up of some liver diseases and its lack of specificity in diagnosing CTX (cerebrotendinous xanthomatosis).  Clin Chim Acta. 1984;  137 305-315
  • 37 Setchell K DR, Flick R, Watkins J B, Piccoli D A. Chronic hepatitis in a 10 yr old due to an inborn error in bile acid synthesis: diagnosis and treatment with oral bile acid.  Gastroenterology. 1990;  98 A578
  • 38 Jacquemin E, Setchell K D, O'Connell N C et al.. A new cause of progressive intrahepatic cholestasis: 3 beta-hydroxy-C27-steroid dehydrogenase/isomerase deficiency.  J Pediatr. 1994;  125 379-384
  • 39 Setchell K DR. Inborn errors of bile acid synthesis: a new category of metabolic liver disease. In: Van Berge, Henegouwen GP, Van Hoek B, De Groote J, et al Cholestatic Liver Diseases: New Strategies for Prevention and Treatment of Hepatobiliary and Cholestatic Liver Diseases. Dordrecht, The Netherlands; Kluwer Academic Publishers 1994: 164-167
  • 40 Witzleben C L, Piccoli D A, Setchell K. A new category of causes of intrahepatic cholestasis.  Pediatr Pathol. 1992;  12 269-274
  • 41 Horslen S P, Lawson A M, Malone M, Clayton P T. 3 beta-Hydroxy-delta 5-C27-steroid dehydrogenase deficiency: effect of chenodeoxycholic acid therapy on liver histology.  J Inherit Metab Dis. 1992;  15 38-46
  • 42 Bove K E, Daugherty C C, Tyson W et al.. Bile acid synthetic defects and liver disease.  Pediatr Dev Pathol. 2000;  3 1-16
  • 43 Lemonde H A, Johnson A W, Clayton P T. The identification of unusual bile acid metabolites by tandem mass spectrometry: use of low-energy collision-induced dissociation to produce informative spectra.  Rapid Commun Mass Spectrom. 1999;  13 1159-1164
  • 44 Libert R, Hermans D, Draye J P et al.. Bile acids and conjugates identified in metabolic disorders by fast atom bombardment and tandem mass spectrometry.  Clin Chem. 1991;  37 2102-2110
  • 45 Mushtaq I, Logan S, Morris M et al.. Screening of newborn infants for cholestatic hepatobiliary disease with tandem mass spectrometry.  BMJ. 1999;  319 471-477
  • 46 Mills K A, Mushtaq I, Johnson A W et al.. A method for the quantitation of conjugated bile acids in dried blood spots using electrospray ionization-mass spectrometry.  Pediatr Res. 1998;  43 361-368
  • 47 Schwarz M, Wright A C, Davis D L et al.. The bile acid synthetic gene 3b-hydroxy-5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis.  J Clin Invest. 2000;  106 1175-1184
  • 48 Cheng J B, Jacquemin E, Gerhardt M et al.. Molecular genetics of 3b-hydroxy-5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease.  J Clin Endocrinol Metab. 2003;  88 1833-1841
  • 49 Javitt N B, Emerman S. Effect of sodium taurolithocholate on bile flow and bile acid exeretion.  J Clin Invest. 1968;  47 1002-1014
  • 50 Stieger B, Zhang J, O'Neill B et al.. Differential interaction of bile acids from patients with inborn errors of bile acid synthesis with hepatocellular bile acid transporters.  Eur J Biochem. 1997;  244 39-44
  • 51 Daugherty C C, Setchell K D, Heubi J E, Balistreri W F. Resolution of liver biopsy alterations in three siblings with bile acid treatment of an inborn error of bile acid metabolism (delta 4-3-oxosteroid 5 beta-reductase deficiency).  Hepatology. 1993;  18 1096-1101
  • 52 Kondo K H, Kai M H, Setoguchi Y et al.. Cloning and expression of cDNA of human delta 4-3-oxosteroid 5 beta-reductase and substrate specificity of the expressed enzyme.  Eur J Biochem. 1994;  219 357-363
  • 53 Sumazaki R, Nakamura N, Shoda J et al.. Gene analysis in delta 4-3-oxosteroid 5 beta-reductase deficiency [letter].  Lancet. 1997;  349 329
  • 54 Clayton P T, Patel E, Lawson A M et al.. 3-Oxo-delta 4 bile acids in liver disease [letter].  Lancet. 1988;  1 1283-1284
  • 55 Wahlen E, Egestad B, Strandvik B, Sjoovall J. Ketonic bile acids in urine of infants during the neonatal period.  J Lipid Res. 1989;  30 1847-1857
  • 56 Bove K E, Heubi J E, Balistreri W F, Setchell K DR. Bile acid synthetic defects and liver disease: a comprehensive review.  Pediatr Dev Pathol. 2004;  7 315-334
  • 57 Mathis U, Karlaganis G, Preisig R. Monohydroxy bile salt sulfates: tauro-3 beta-hydroxy-5-cholenoate-3-sulfate induces intrahepatic cholestasis in rats.  Gastroenterology. 1983;  85 674-681
  • 58 Ferdinandusse S, Denis S, Clayton P T et al.. Mutations in the gene encoding peroxisomal 2-methyl-acyl racemase cause adult-onset sensory motor neuropathy.  Nat Genet. 2000;  24 188-191
  • 59 Kuramoto T, Kikuchi H, Sanemori H, Hoshita T. Bile salts of anura.  Chem Pharm Bull (Tokyo). 1973;  21 952-959
  • 60 Haslewood G A. Bile salt evolution.  J Lipid Res. 1967;  8 535-550
  • 61 Van Veldhoven P P, Meyhi E, Squires J et al.. Fibroblast studies documenting a case of peroxisomal 2-methylacyl-CoA racemase deficiency: possible link between racemase deficiency and malabsorption and vitamin K deficiency.  Eur J Clin Invest. 2001;  31 714-722
  • 62 Christensen E, Van Eldere J, Brandt N J et al.. A new peroxisomal disorder: di- and trihydroxycholestanaemia due to a presumed trihydroxycholestanoyl-CoA oxidase deficiency.  J Inherit Metab Dis. 1990;  13 363-366
  • 63 ten Brink H J, Wanders R J, Christensen E et al.. Heterogeneity in di/trihydroxycholestanoic acidaemia.  Ann Clin Biochem. 1994;  31 195-197
  • 64 Vanhove G F, Van Veldhoven P P, Fransen M et al.. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney.  J Biol Chem. 1993;  268 10335-10344
  • 65 Przyrembel H, Wanders R J, van Roermund C W et al.. Di- and trihydroxycholestanoic acidaemia with hepatic failure.  J Inherit Metab Dis. 1990;  13 367-370
  • 66 Masui T, Staple E. The formation of bile acids from cholesterol: the conversion of 5-beta-cholestane-3-alpha,7-alpha-triol-26-oic acid to cholic acid via 5-beta-cholestane-3-alpha,7-alpha,12-alpha, 24-xi-tetraol-26-oic acid I by rat liver.  J Biol Chem. 1966;  241 3889-3893
  • 67 Matoba N, Une M, Hoshita T. Identification of unconjugated bile acids in human bile.  J Lipid Res. 1986;  27 1154-1162
  • 68 Crosignani A, Podda M, Battezzati P M et al.. Changes in bile acid composition in patients with primary biliary cirrhosis induced by ursodeoxycholic acid administration.  Hepatology. 1991;  14 1000-1007
  • 69 Falany C N, Xie X, Wheeler J B et al.. Molecular cloning and expression of rat liver bile acid CoA ligase.  J Lipid Res. 2002;  43 2062-2072
  • 70 Shonsey E M, Wheeler J, Johnson M et al.. Synthesis of bile acid coenzyme a thioesters in the amino acid conjugation of bile acids.  Methods Enzymol. 2005;  400 360-373
  • 71 Carlton V E, Harris B Z, Puffenberger E G et al.. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT.  Nat Genet. 2003;  34 91-96
  • 72 Shefer S, Cheng F W, Dayal B et al.. A 25-hydroxylation pathway of cholic acid biosynthesis in man and rat.  J Clin Invest. 1976;  57 897-903
  • 73 Duane W C, Bjorkhem I, Hamilton J N, Mueller S M. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat.  Hepatology. 1988;  8 613-618
  • 74 Duane W C, Pooler P A, Hamilton J N. Bile acid synthesis in man: in vivo activity of the 25-hydroxylation pathway.  J Clin Invest. 1988;  82 82-85
  • 75 Pullinger C R, Eng C, Salen G et al.. Human cholesterol 7ahydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype.  J Clin Invest. 2002;  110 109-117
  • 76 Schwarz M, Lund E G, Setchell K DR et al.. Disruption of cholesterol 7alpha-hydroxylase gene in mice: II. Bile acid deficiency is overcome by induction of oxysterol 7alphahydroxylase.  J Biol Chem. 1996;  271 18024-18031
  • 77 Setchell K DR, Lawson A M. The bile acids. In: Lawson AM Clinical Biochemistry Principles, Methods, Applications. Vol. 1: Mass Spectrometry. Berlin, Germany; Walter de Gruyter; 1988: 54-125
  • 78 Lawson A M, Setchell K DR. Mass spectrometry of bile acids. In: Setchell KDR, Kritchevsky D, Nair PP The Bile Acids. Vol. 4: Methods and Applications. New York, NY; Plenum Press 1988: 167-268
  • 79 Sjovall J, Lawson A M, Setchell K DR. Mass spectrometry of bile acids. In: Law JH, Rilling HC Methods in Enzymology. London, United Kingdom; Academic Press 1985: 63-113
  • 80 Lawson A M, Madigan M J, Shortland D, Clayton P T. Rapid diagnosis of Zellweger syndrome and infantile Refsum's disease by fast atom bombardment: mass spectrometry of urine bile salts.  Clin Chim Acta. 1986;  161 221-231
  • 81 Roda A, Gioacchini A M, Cerre C, Baraldini M. High-performance liquid chromatographic-electrospray mass spectrometric analysis of bile acids in biological fluids.  J Chromatogr B Biomed Appl. 1995;  665 281-294
  • 82 Ikegawa S, Murao N, Motoyama T et al.. Separation and detection of bile acid 3-glucuronides in human urine by liquid chromatography/electrospray ionization-mass spectrometry.  Biomed Chromatogr. 1996;  10 313-317
  • 83 Lawson A M, Setchell K DR. Mass spectrometry of bile acids. In: Setchell KDR, Kritchevsky D, Nair PP The Bile Acids. Vol. 4: Methods and Applications. New York, NY; Plenum Press 1988: 167-268
  • 84 Sjovall J, Lawson A M, Setchell K DR. Mass spectrometry of bile acids. In: Law JH, Rilling HC Methods in Enzymology. London, United Kingdom; Academic Press 1985: 63-113
  • 85 Evans J E, Ghosh A, Evans B A, Natowicz M R. Screening techniques for the detection of inborn errors of bile acid metabolism by direct injection and micro-high performance liquid chromatography-continuous flow/fast atom bombardment mass spectrometry.  Biol Mass Spectrom. 1993;  22 331-337
  • 86 Meng L J, Griffiths W J, Nazer H et al.. High levels of (24S)-24-hydroxycholesterol 3-sulfate, 24-glucuronide in the serum and urine of children with severe cholestatic liver disease.  J Lipid Res. 1997;  38 926-934
  • 87 Salen G, Meriwether T W, Nicolau G. Chenodeoxycholic acid inhibits increased cholesterol and cholestanol synthesis in patients with cerebrotendinous xanthomatosis.  Biochem Med. 1975;  14 57-74
  • 88 Koopman B J, Wolthers B G, van der Molen J C, Waterreus R J. Bile acid therapies applied to patients suffering from cerebrotendinous xanthomatosis.  Clin Chim Acta. 1985;  152 115-122
  • 89 Berginer V M, Salen G, Shefer S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid.  N Engl J Med. 1984;  311 1649-1652
  • 90 Wolthers B G, Volmer M, van der Molen J et al.. Diagnosis of cerebrotendinous xanthomatosis (CTX) and effect of chenodeoxycholic acid therapy by analysis of urine using capillary gas chromatography.  Clin Chim Acta. 1983;  131 53-65
  • 91 van Heijst A F, Wevers R A, Tangerman A et al.. Chronic diarrhoea as a dominating symptom in two children with cerebrotendinous xanthomatosis.  Acta Paediatr. 1996;  85 932-936
  • 92 van Heijst A F, Verrips A, Wevers R A et al.. Treatment and follow-up of children with cerebrotendinous xanthomatosis.  Eur J Pediatr. 1998;  157 313-316
  • 93 Lewis B, Mitchell W D, Marenah C B et al.. Cerebrotendinous xanthomatosis: biochemical response to inhibition of cholesterol synthesis.  BMJ. 1983;  287 21-22
  • 94 Verrips A, Wevers R A, Van Engelen B G et al.. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis.  Metabolism. 1999;  48 233-238
  • 95 Ichimiya H, Egestad B, Nazer H et al.. Bile acids and bile alcohols in a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment.  J Lipid Res. 1991;  32 829-841
  • 96 Clayton P T, Mills K A, Johnson A W et al.. Delta 4-3-oxosteroid 5 beta-reductase deficiency: failure of ursodeoxycholic acid treatment and response to chenodeoxycholic acid plus cholic acid.  Gut. 1996;  38 623-628
  • 97 Gruy-Kapral C, Little K H, Fordtran J S et al.. Conjugated bile acid replacement therapy for short-bowel syndrome.  Gastroenterology. 1999;  116 15-21
  • 98 Setchell K DR, Heubi J E. Defects in bile acid biosynthesis: diagnosis and treatment.  J Pediatr Gastroenterol Nutr. 2006;  43 S17-S22

James E HeubiM.D. 

General Clinical Research Center, Cincinnati Children's Hospital Medical Center

3333 Burnet Avenue, Cincinnati, OH 45229-3039

    >