Skip to main content
Log in

Angiotensin preconditioning of the heart

Evidence for redox signaling

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II) has been found to exert preconditioning-like effect on mammalian hearts. Diverse mechanisms are known to exist to explain the cardioprotective abilities of Ang II preconditioning. The present study hypothesized, based on the recent report that Ang II generates reactive oxygen species (ROS) through NADPH oxidase, that Ang II preconditioning occurs through redox cycling. To test this hypothesis, a group of rat hearts was treated with Ang II in the absence or presence of an NADPH oxidase inhibitor, apocynin; or a cell-permeable ROS scavenger, N-acetyl cysteine (NAC). Ang II pretreatment improved postischemic ventricular recovery; reduced myocardial infarction; and decreased the number of cardiomyocyte apoptosis, indicating its ability to precondition the heart against ischemic injury. Both apocynin and NAC almost abolished the preconditioning ability of Ang II. Ang II resulted in increase in ROS activity in the heart, which was reduced by either NAC or apocynin. Ang II also increased both the NADPH oxidase subunits gp91 phox and p22phox mRNA expression, which was abolished with apocynin and NAC. Our results thus demonstrate that the Ang II preconditioning was associated with enhanced ROS activities and increased NADPH oxidase subunits p22phox and gp91phox expression. Both NAC and apocynin reduced ROS activities simultaneously abolishing preconditioning ability of Ang II, suggesting that Ang II preconditioning occurs through redox cycling. That both NAC and apocynin reduced ROS activities and abolished Ang II-mediated increase in p22phox and gp91phox activity further suggest that such redox cycling occurs via both NADPH oxidase-dependent and-independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, X. H. and Allen, D. G. (2003) The role of endogenous angiotensin II in ischemia, reperfusion and preconditioning of the isolated rat heart. Pflugers Arch. 445, 645–650.

    Google Scholar 

  2. Booz, G. W., Day, J. N., and Baker, K. M. (2002) Interplay between the cardiac renin angiotensin system and JAKSTAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J. Mol. Cell. Cardiol. 34, 1443–1453.

    Article  PubMed  CAS  Google Scholar 

  3. Ferreira, A. J., Santos, R. A., and Almeida, A. P. (2001) Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38, 665–668.

    PubMed  CAS  Google Scholar 

  4. Sharma, A. and Singh, M. (2000) Possible mechanism of cardioprotective effect of angiotensin preconditioning in isolated rat heart. Eur. J. Pharmacol. 406, 85–92.

    Article  PubMed  CAS  Google Scholar 

  5. Sharma, A. and Singh, M. (2000) Effect of ethylisopropyl amiloride, a Na+−H+ exchange inhibitor, on cardioprotective effect of ischemic and angiotensin preconditioning. Mol. Cell. Biochem. 214, 31–38.

    Article  PubMed  CAS  Google Scholar 

  6. Nakano, A., Miura, T., Ura, N., Suzuki, K., and Shimamoto, K. (1997) Role of angiotensin II type I receptor in preconditioning against infarction. Coron. Artery Dis. 8, 343–350.

    Article  PubMed  CAS  Google Scholar 

  7. Diaz, R. J. and Wilson, G. J. (1997) Selective blockade of AT1 angiotensin II receptors abolishes ischemic preconditioning in isolated rabbit hearts. J. Mol. Cell. Cardiol. 29, 129–139.

    Article  PubMed  CAS  Google Scholar 

  8. Morris, S. D. and Yellon, D. M. (1997) Angiotensin-converting enzyme inhibitors potentiate preconditioning through bradykinin B2 receptor activation in human heart. J. Am. Coll. Cardiol. 29, 1599–1606.

    Article  PubMed  CAS  Google Scholar 

  9. Miki, T., Miura, T., Ura, N., et al. (1996) Captopril potentiates the myocardial infarct size-limiting effect of ischemic preconditioning through bradykinin B2 receptor activation. J. Am. Coll. Cardiol. 28, 1616–1622.

    Article  PubMed  CAS  Google Scholar 

  10. Franco, M. C., Akamine, E. H., Di Marco, G. S., et al. (2003) NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin-angiotensin system. Cardiovasc. Res. 59, 767–775.

    Article  CAS  Google Scholar 

  11. Lopez, B., Salom, M. G., Arregui, B., Velero, F., and Fenoy, F. J. (2003) Role of superoxide in moldulating the renal effects of angiotensin II. Hypertension 42, 1150–1156.

    Article  PubMed  CAS  Google Scholar 

  12. Sato, M., Cordis, G. A., Maulik, N., and Das, D. K. (2000) SAPKs regulation of ischemic preconditioning. Am. J. Physiol. 279, H901-H907.

    CAS  Google Scholar 

  13. Engelman, D. T., Watanabe, M., Engelman, R. M., et al. (1995) Hypoxic preconditioning preserves antioxidant reserve in the working rat heart. Cardiovasc. Res. 29, 133–140.

    Article  PubMed  CAS  Google Scholar 

  14. Hattori, R., Maulik, N., Otani, H., et al. (2005) Role of Stat 3 in ischemic preconditioning. J. Mol. Cell. Cardiol., in press.

  15. Maulik, N., Goswami, S., Galang, N., and Das, D. K. (1999) Differential regulation of bcl-2, AP-1 and NFϰB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Lett. 443, 331–336.

    Article  PubMed  CAS  Google Scholar 

  16. Cordis, G. A., Maulik, N., and Das, D. K. (1995) Detection of oxidative stress in heart by estimating the dinitrophenylhydrazine derivative of malonaldehyde. J. Mol. Cell. Cardiol. 27, 1645–1653.

    Article  PubMed  CAS  Google Scholar 

  17. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W. (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148.

    PubMed  CAS  Google Scholar 

  18. Rajagopalan, S., Kurz, S., Munzel, T., et al. (1996) Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J. Clin. Investig. 97, 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  19. Griendling, K. K., Sorescu, D., and Ushio-Fukai, M. (2000) MAD(P)H oxidase. Role in cardiovascular biology and disease. Circ. Res. 86, 494–501.

    PubMed  CAS  Google Scholar 

  20. Das, D. K., Maulik, N., Sato, M., and Ray, P. (1999) Reactive oxygen species function as second messengers during ischemic preconditioning of heart. Mol. Cell. Biochem. 196, 59–67.

    Article  PubMed  CAS  Google Scholar 

  21. Das, D. K. and Maulik, N. (2003) Preconditioning potentiates redox signaling and converts death signal into survival signal. Arch. Biochem. Biphys. 420, 305–311.

    Article  CAS  Google Scholar 

  22. Das, D. K. (2001) Redox regulation of cardiomyocyte survival and death. Antioxid. Redox Signal. 3, 23–37.

    Article  PubMed  CAS  Google Scholar 

  23. Maulik, N., Sato, M., Price, B. D., and Das, D. K. (1998) An essential role of NFϰB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett. 429, 365–369.

    Article  PubMed  CAS  Google Scholar 

  24. Maulik, N., Engelman, R. M., Flack, J. E., Rousou, J. A., Deaton, D., and Das, D. K. (1999) Ischemic preconditioning reduces apoptosis by upregulating anti-death gene bcl-2. Circulation 100, II369-II375.

    PubMed  CAS  Google Scholar 

  25. Tosaki, A., Engelman, D. T., Engelman, R. M., and Das, D. K. (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc. Res. 31, 526–536.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, Y., Tsuchida, A., Cohen, M. V., and Downey, J. M. (1995) Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J. Mol. Cell. Cardiol. 27, 883–892.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu, Y. C., Zhu, Y. Z., Gohlke, P., Stauss, H. M., and Unger, T. (1997) Effects of angiotensin-converting enzyme inhibition and angiotensin II AT1 receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am. J. Cardiol. 80, 110A-117A.

    Article  PubMed  CAS  Google Scholar 

  28. Schwarz, E. R., Montino, H., Fleischlauer, J., Kleus, H. G., vom Dahl, J., and Hanrath, P. (1997) Angiotensin II receptor antagonist EXP 3174 reduces infarct size comparable with enalprilat and augments preconditioning in the pig heart. Cardiovasc. Drug Ther. 11, 687–695.

    Article  CAS  Google Scholar 

  29. Das, D. K., Maulik, N., and Engelman, R. M. (2000) Redox regulation of angiotensin II signaling in the heart. J. Cell. Mol. Med. 214, 31–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Engelman, R.M., Maulik, N. et al. Angiotensin preconditioning of the heart. Cell Biochem Biophys 44, 103–110 (2006). https://doi.org/10.1385/CBB:44:1:103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:1:103

Index Entries

Navigation